khanat-opennel-code/code/nel/include/nel/3d/track_tcb.h
2015-02-14 14:31:19 +01:00

569 lines
14 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef NL_TRACK_H
#error "internal file included from track.h"
#endif
// ***************************************************************************
// ***************************************************************************
// TCB Keyframes.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
/**
* TCB Track tools (for both normal TCB, and quat TCB). internal use.
*
* \author Cyril 'Hulud' Corvazier
* \author Nevrax France
* \date 2001
*/
template<class CKeyT, class T, class TMapTimeCKey>
class CTCBTools
{
protected:
typedef typename TMapTimeCKey::iterator TMapTimeCKeyIterator;
/// compute TCB ease information.
void compileTCBEase(TMapTimeCKey &mapKey, bool loopMode)
{
TMapTimeCKeyIterator it= mapKey.begin();
for(;it!=mapKey.end();it++)
{
TMapTimeCKeyIterator next= it;
next++;
// loop mgt. must compute ease from last to first (useful if _RangeLock is false).
if(next==mapKey.end() && loopMode && mapKey.size()>1)
next= mapKey.begin();
// Ease Precompute.
//=================
CKeyT &key= it->second;
if(next!=mapKey.end())
{
float e0= it->second.EaseFrom;
float e1= next->second.EaseTo;
float s = e0 + e1;
// "normalize".
if (s > 1.0f)
{
e0 = e0/s;
e1 = e1/s;
}
// precalc ease factors.
key.Ease0= e0;
key.Ease1= e1;
key.EaseK= 1/(2.0f - e0 - e1);
if(e0)
key.EaseKOverEase0= key.EaseK / e0;
if(e1)
key.EaseKOverEase1= key.EaseK / e1;
}
else
{
// force ease() to just return d (see ease()).
key.EaseK = 0.5f;
}
}
}
// ease time.
float ease(const CKeyT *key, float d)
{
if (d==0.0f || d==1.0f) return d;
// k==0.5f <=> e0+e1 == 0.
if (key->EaseK == 0.5f) return d;
if (d < key->Ease0)
return key->EaseKOverEase0 * d*d;
else if (d < 1.0f - key->Ease1)
return key->EaseK * (2.0f*d - key->Ease0);
else
{
d = 1.0f - d;
return 1.0f - key->EaseKOverEase1 * d*d;
}
}
// compute hermite factors.
void computeHermiteBasis(float d, float hb[4])
{
float d2,d3,a;
d2 = d*d;
d3 = d2*d;
a = 3.0f*d2 - 2.0f*d3;
hb[0] = 1.0f - a;
hb[1] = a;
hb[2] = d3 - 2.0f*d2 + d;
hb[3] = d3 - d2;
}
// compute TCB tangents factors.
void computeTCBFactors(const CKeyT &key, float timeBefore, float time, float timeAfter,
float rangeDelta, bool firstKey, bool endKey, bool isLoop, float &ksm, float &ksp, float &kdm, float &kdp)
{
float fp,fn;
if(isLoop || (!firstKey && !endKey))
{
float dtm;
// Compute Time deltas.
if (firstKey)
{
dtm = 0.5f * (rangeDelta + timeAfter - time);
fp = rangeDelta / dtm;
fn = (timeAfter - time) / dtm;
}
else if (endKey)
{
dtm = 0.5f * (rangeDelta + time - timeBefore);
fp = rangeDelta / dtm;
fn = (time - timeBefore) / dtm;
}
else
{
dtm = 0.5f * (timeAfter - timeBefore);
fp = (time - timeBefore) / dtm;
fn = (timeAfter - time) / dtm;
}
float c= (float)fabs( key.Continuity );
fp = fp + c - c * fp;
fn = fn + c - c * fn;
}
else
{
// firstkey and lastkey of not loop track.
fp = 1.0f;
fn = 1.0f;
}
// Compute tangents factors.
float tm,cm,cp,bm,bp,tmcm,tmcp;
cm = 1.0f - key.Continuity;
tm = 0.5f * ( 1.0f - key.Tension );
cp = 2.0f - cm;
bm = 1.0f - key.Bias;
bp = 2.0f - bm;
tmcm = tm*cm; tmcp = tm*cp;
// tgts factors.
ksm = tmcm*bp*fp; ksp = tmcp*bm*fp;
kdm = tmcp*bp*fn; kdp = tmcm*bm*fn;
}
};
// ***************************************************************************
/**
* ITrack implementation for TCB keyframer.
*
* \author Cyril 'Hulud' Corvazier
* \author Nevrax France
* \date 2001
*/
template<class CKeyT, class T>
class CTrackKeyFramerTCB : public ITrackKeyFramer<CKeyT>, private CTCBTools<CKeyT, T, std::map<TAnimationTime, CKeyT> >
{
public:
protected:
typedef typename CKeyT::TValueType TKeyValueType;
/// \name From ITrackKeyFramer
// @{
/// evalKey (runtime).
virtual void evalKey ( const CKeyT* previous, const CKeyT* next,
TAnimationTime datePrevious, TAnimationTime /* dateNext */,
TAnimationTime date, IAnimatedValue &result )
{
CAnimatedValueBlendable<T> &resultVal= static_cast<CAnimatedValueBlendable<T>&>(result);
if(previous && next)
{
// lerp from previous to cur.
date-= datePrevious;
date*= previous->OODeltaTime;
NLMISC::clamp(date, 0,1);
date = this->ease(previous, (float)date);
float hb[4];
this->computeHermiteBasis(date, hb);
copyToValue(resultVal.Value,
previous->Value*hb[0] + next->Value*hb[1] +
previous->TanFrom*hb[2] + next->TanTo*hb[3]);
}
else
{
if (previous)
copyToValue(resultVal.Value, previous->Value);
else
if (next)
copyToValue(resultVal.Value, next->Value);
}
}
/// compile (precalc).
virtual void compile()
{
ITrackKeyFramer<CKeyT>::compile();
// Ease Precompute.
this->compileTCBEase(this->_MapKey, this->getLoopMode());
// Tangents Precompute.
sint nKeys= (sint)this->_MapKey.size();
if(nKeys<=1)
return;
typename std::map<TAnimationTime, CKeyT>::iterator it= this->_MapKey.begin(); // first key.
typename std::map<TAnimationTime, CKeyT>::iterator itNext= it; itNext++; // second key.
typename std::map<TAnimationTime, CKeyT>::iterator itPrev= this->_MapKey.end(); itPrev--; // last key.
if(nKeys==2 && !this->getLoopMode())
{
computeTCBKeyLinear( it->second, itNext->second );
}
else
{
// rangeDelta is the length of effective Range - length of LastKey-FirstKey.
// NB: if RangeLock, rangeDelta==0.
float rangeDelta;
// NB: _RangeDelta has just been compiled in ITrackKeyFramer<CKeyT>::compile().
rangeDelta= this->getCompiledRangeDelta();
// Compute all middle keys.
for(;it!=this->_MapKey.end();)
{
// Do the first key and the last key only in LoopMode.
// NB: we are the last if itNext==_MapKey.begin().
if(this->getLoopMode() || (it!=this->_MapKey.begin() && itNext!=this->_MapKey.begin()) )
{
computeTCBKey(itPrev->second, it->second, itNext->second,
itPrev->first, it->first, itNext->first, rangeDelta,
it==this->_MapKey.begin(), itNext==this->_MapKey.begin(), this->getLoopMode());
}
// Next key!!
itPrev= it;
it++;
itNext++;
// loop.
if(itNext==this->_MapKey.end())
itNext= this->_MapKey.begin();
}
// In not loop mode, compute first and last key, AFTER middle keys computed.
if(!this->getLoopMode())
{
typename std::map<TAnimationTime, CKeyT>::iterator it0= this->_MapKey.begin(); // first key.
typename std::map<TAnimationTime, CKeyT>::iterator it1= it0; it1++; // second key.
typename std::map<TAnimationTime, CKeyT>::iterator itLast= this->_MapKey.end();itLast--; // last key.
typename std::map<TAnimationTime, CKeyT>::iterator itLastPrev= itLast;itLastPrev--; // prev of last key.
computeFirstKey(it0->second, it1->second);
computeLastKey(itLast->second, itLastPrev->second);
}
}
}
// @}
// *****************
private:
void computeTCBKey(CKeyT &keyBefore, CKeyT &key, CKeyT &keyAfter, float timeBefore, float time, float timeAfter,
float rangeDelta, bool firstKey, bool endKey, bool isLoop)
{
float ksm,ksp,kdm,kdp;
// compute tangents factors.
this->computeTCBFactors(key, timeBefore, time, timeAfter, rangeDelta, firstKey, endKey, isLoop, ksm,ksp,kdm,kdp);
// Delta.
TKeyValueType delm, delp;
delm = key.Value - keyBefore.Value;
delp = keyAfter.Value - key.Value;
// Tangents.
key.TanTo = delm*ksm + delp*ksp;
key.TanFrom= delm*kdm + delp*kdp;
}
// compute 2 TCB keys for a not-loop track => "linear".
void computeTCBKeyLinear(CKeyT &key0, CKeyT &key1)
{
float f0, f1;
TKeyValueType dv;
f0 = 1.0f - key0.Tension;
f1 = 1.0f - key1.Tension;
dv = key1.Value - key0.Value;
key0.TanFrom= dv * f0;
key1.TanTo= dv * f1;
}
// compute this AFTER computing key1.
void computeFirstKey(CKeyT &keyFirst, CKeyT &keyAfter)
{
float tm;
tm = 0.5f * (1.0f - keyFirst.Tension);
keyFirst.TanFrom= tm * ((keyAfter.Value - keyFirst.Value) * 3.0f - keyAfter.TanTo);
}
// compute this AFTER computing key(n-2).
void computeLastKey(CKeyT &keyLast, CKeyT &keyBefore)
{
float tm;
tm = 0.5f * (1.0f - keyLast.Tension);
keyLast.TanTo= tm * ((keyLast.Value - keyBefore.Value) * 3.0f - keyBefore.TanFrom);
}
};
// ***************************************************************************
/**
* ITrack implementation for CQuat TCB keyframer.
*
* \author Lionel Berenguier
* \author Nevrax France
* \date 2001
*/
template<> class CTrackKeyFramerTCB<CKeyTCBQuat, NLMISC::CAngleAxis> : public ITrackKeyFramer<CKeyTCBQuat>,
private CTCBTools<CKeyTCBQuat, NLMISC::CAngleAxis, std::map<TAnimationTime, CKeyTCBQuat> >
{
public:
/// \name From ITrackKeyFramer
// @{
/// evalKey (runtime).
virtual void evalKey ( const CKeyTCBQuat* previous, const CKeyTCBQuat* next,
TAnimationTime datePrevious, TAnimationTime /* dateNext */,
TAnimationTime date, IAnimatedValue &result )
{
CAnimatedValueQuat &resultVal= static_cast<CAnimatedValueQuat&>(result);
if(previous && next)
{
// lerp from previous to cur.
date-= datePrevious;
date*= previous->OODeltaTime;
NLMISC::clamp(date, 0,1);
// ease.
date = ease(previous, date);
// quad slerp.
resultVal.Value= CQuat::squadrev(next->LocalAngleAxis, previous->Quat, previous->A, next->B, next->Quat, date);
}
else
{
if (previous)
resultVal.Value= previous->Quat;
else
if (next)
resultVal.Value= next->Quat;
}
}
/// compile (precalc).
virtual void compile()
{
ITrackKeyFramer<CKeyTCBQuat>::compile();
// Ease Precompute.
this->compileTCBEase(_MapKey, getLoopMode());
TMapTimeCKey::iterator it;
TMapTimeCKey::iterator itNext;
TMapTimeCKey::iterator itPrev;
// Compute absolute quaternions.
for (it= _MapKey.begin();it!=_MapKey.end();)
{
CKeyTCBQuat &key= it->second;
// Compute Local AngleAxis.
if(it!= _MapKey.begin())
{
NLMISC::CMatrix mat;
mat.setRot(itPrev->second.Quat);
mat.invert();
key.LocalAngleAxis.Axis= mat*key.Value.Axis;
key.LocalAngleAxis.Angle= key.Value.Angle;
}
else
key.LocalAngleAxis= key.Value;
key.LocalAngleAxis.Axis.normalize();
// make angle positive.
if(key.LocalAngleAxis.Angle<0.f)
{
key.LocalAngleAxis.Axis= -key.LocalAngleAxis.Axis;
key.LocalAngleAxis.Angle= -key.LocalAngleAxis.Angle;
}
// relative quat
key.Quat.setAngleAxis(key.LocalAngleAxis);
// absolute quat
if (it!= _MapKey.begin())
key.Quat = itPrev->second.Quat * key.Quat;
// next key.
itPrev= it;
it++;
}
// Tangents Precompute.
sint nKeys= (sint)_MapKey.size();
if(nKeys<=1)
return;
// rangeDelta is the length of effective Range - length of LastKey-FirstKey.
// NB: if RangeLock, rangeDelta==0.
float rangeDelta;
// NB: _RangeDelta has just been compiled in ITrackKeyFramer<CKeyTCBQuat>::compile().
rangeDelta= getCompiledRangeDelta();
it= _MapKey.begin(); // first key.
itNext= it; itNext++; // second key.
itPrev= _MapKey.end(); itPrev--; // last key.
// Compute all keys.
for(;it!=_MapKey.end();)
{
// NB: we are the last key if itNext==_MapKey.begin().
computeTCBKey(itPrev->second, it->second, itNext->second,
itPrev->first, it->first, itNext->first, rangeDelta, it==_MapKey.begin(), itNext==_MapKey.begin(), getLoopMode());
// Next key!!
itPrev= it;
it++;
itNext++;
// loop.
if(itNext==_MapKey.end())
itNext= _MapKey.begin();
}
}
// @}
// *****************
private:
void computeTCBKey(CKeyTCBQuat &keyBefore, CKeyTCBQuat &key, CKeyTCBQuat &keyAfter, float timeBefore, float time, float timeAfter,
float rangeDelta, bool firstKey, bool endKey, bool isLoop)
{
CQuat qp, qm;
// compute qm.
if (!firstKey || isLoop)
{
float angle= key.LocalAngleAxis.Angle;
CVector &axis= key.LocalAngleAxis.Axis;
if (angle > 2*NLMISC::Pi- NLMISC::QuatEpsilon)
{
qm.set(axis.x, axis.y, axis.z, 0.0f);
qm = qm.log();
}
else
{
CQuat qprev= keyBefore.Quat;
qprev.makeClosest(key.Quat);
qm = CQuat::lnDif(qprev, key.Quat);
}
}
// compute qp.
if (!endKey || isLoop)
{
float angle= keyAfter.LocalAngleAxis.Angle;
CVector &axis= keyAfter.LocalAngleAxis.Axis;
if (angle > 2*NLMISC::Pi- NLMISC::QuatEpsilon)
{
qp.set(axis.x, axis.y, axis.z, 0.0f);
qp = qp.log();
}
else
{
CQuat qnext= keyAfter.Quat;
qnext.makeClosest(key.Quat);
qp = CQuat::lnDif(key.Quat, qnext);
}
}
// not loop mgt.
if (firstKey && !isLoop)
qm = qp;
if (endKey && !isLoop)
qp = qm;
// compute tangents factors.
float ksm, ksp, kdm, kdp;
computeTCBFactors(key, timeBefore, time, timeAfter, rangeDelta, firstKey, endKey, isLoop, ksm,ksp,kdm,kdp);
// A/B.
CQuat qa, qb;
qb= (qm * (1.0f-ksm) + qp * (-ksp) ) * 0.5f;
qa= (qm * kdm + qp * (kdp-1.0f) ) * 0.5f;
qa = qa.exp();
qb = qb.exp();
key.A = key.Quat * qa;
key.B = key.Quat * qb;
}
};