khanat-opennel-code/code/ryzom/server/src/ai_share/world_map.h
2013-09-27 01:32:01 +02:00

3929 lines
86 KiB
C++

// Ryzom - MMORPG Framework <http://dev.ryzom.com/projects/ryzom/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef NL_WORLD_MAP_H
#define NL_WORLD_MAP_H
#include "nel/misc/types_nl.h"
#include "nel/misc/time_nl.h"
#include "nel/misc/debug.h"
#include "nel/misc/stream.h"
#include "nel/pacs/u_global_position.h"
#include "nel/misc/vectord.h"
#include "16x16_layer.h"
#include "ai_coord.h"
#include "ai_vector.h"
#include "ai_types.h"
class CFollowPath;
namespace RYPACSCRUNCH
{
class CPacsCruncher;
}
namespace RYAI_MAP_CRUNCH
{
enum TAStarFlag
{
Nothing = 0,
Interior = 1,
Water = 2,
NoGo = 4,
WaterAndNogo = 6,
GroundFlags = WaterAndNogo
};
const std::string& toString(TAStarFlag flag);
TAStarFlag toAStarFlag(const std::string& str);
uint const WorldMapGridSize = 256;
double const WorldGridResolution = 1.;
NLMISC::CVectorD const WorldStartOffset = NLMISC::CVectorD(0., 0., 0.);
typedef sint TLevel;
//////////////////////////////////////////////////////////////////////////////
/**
* Slot for the 3 map layer (corresponding to 3 heights of deplacement)
* \author Stephane le Dorze
* \author Nevrax France
* \date 2003
*/
class CSlot
{
public:
enum
{
INVALID_SLOT = 3
};
public:
explicit CSlot();
explicit CSlot(uint slot);
bool isValid() const { return _Slot!=INVALID_SLOT; }
void setSlot(CSlot const& slot) { _Slot = slot._Slot; }
bool operator ==(CSlot const& slot) const { return _Slot==slot._Slot; }
bool operator !=(CSlot const& slot) const { return _Slot!=slot._Slot; }
bool operator >(CSlot const& slot) const { return _Slot>slot._Slot; }
bool operator <(CSlot const& slot) const { return _Slot<slot._Slot; }
bool operator >=(CSlot const& slot) const { return _Slot>=slot._Slot; }
bool operator <=(CSlot const& slot) const { return _Slot<=slot._Slot; }
CSlot const& operator ++();
uint8 slot() const { return _Slot; }
private:
uint8 _Slot;
};
inline
CSlot::CSlot()
: _Slot(INVALID_SLOT)
{
}
inline
CSlot::CSlot(uint slot)
: _Slot(slot)
{
#ifdef NL_DEBUG
nlassert(slot>=0 && slot<=3);
#endif
}
inline
CSlot const& CSlot::operator ++()
{
++_Slot;
#ifdef NL_DEBUG
nlassert(_Slot<=INVALID_SLOT);
#endif
return *this;
}
//////////////////////////////////////////////////////////////////////////////
/**
* Compressed link set for the 4 cardinal directions
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CCellLinkage
// pass CCellLinkage parameters by references. (anyway) and remove validation checks. (big update to come).
{
public:
enum
{
SouthSlotOffset = 0,
SouthSlotMask = 0x03,
EastSlotOffset = 2,
EastSlotMask = 0x0c,
NorthSlotOffset = 4,
NorthSlotMask = 0x30,
WestSlotOffset = 6,
WestSlotMask = 0xc0,
};
public:
CCellLinkage(uint8 links = 0xff);
CSlot SSlot() const { return CSlot((_Links & SouthSlotMask) >> SouthSlotOffset); }
CSlot ESlot() const { return CSlot((_Links & EastSlotMask) >> EastSlotOffset); }
CSlot NSlot() const { return CSlot((_Links & NorthSlotMask) >> NorthSlotOffset); }
CSlot WSlot() const { return CSlot((_Links & WestSlotMask) >> WestSlotOffset); }
bool isSSlotValid() const { return (_Links&SouthSlotMask)!=SouthSlotMask; }
bool isESlotValid() const { return (_Links&EastSlotMask)!=EastSlotMask; }
bool isNSlotValid() const { return (_Links&NorthSlotMask)!=NorthSlotMask; }
bool isWSlotValid() const { return (_Links&WestSlotMask)!=WestSlotMask; }
void setSSlot(CSlot const& slot);
void setESlot(CSlot const& slot);
void setNSlot(CSlot const& slot);
void setWSlot(CSlot const& slot);
CCellLinkage& operator |=(uint8 links);
bool used() const { return _Links!=0xff; }
uint8 getLinks() const { return _Links; }
void serial(NLMISC::IStream &f);
private:
uint8 _Links;
};
inline
CCellLinkage::CCellLinkage(uint8 links)
: _Links(links)
{
}
inline
void CCellLinkage::setSSlot(CSlot const& slot)
{
_Links = (_Links & (~SouthSlotMask)) + (slot.slot() << SouthSlotOffset);
}
inline
void CCellLinkage::setESlot(CSlot const& slot)
{
_Links = (_Links & (~EastSlotMask)) + (slot.slot() << EastSlotOffset);
}
inline
void CCellLinkage::setNSlot(CSlot const& slot)
{
_Links = (_Links & (~NorthSlotMask)) + (slot.slot() << NorthSlotOffset);
}
inline
void CCellLinkage::setWSlot(CSlot const& slot)
{
_Links = (_Links & (~WestSlotMask)) + (slot.slot() << WestSlotOffset);
}
inline
CCellLinkage& CCellLinkage::operator |=(uint8 links)
{
_Links |= links;
return *this;
}
inline
void CCellLinkage::serial(NLMISC::IStream &f)
{
f.serial(_Links);
}
//////////////////////////////////////////////////////////////////////////////
class CDirection
{
friend class CWorldMap;
public:
enum TDeltaDirection
{
HALF_TURN_LEFT = 1, // 45 degres
HALF_TURN_RIGHT = -1, // -45 degres
TURN_LEFT = 2, // 90 degres
TURN_RIGHT = -2, // -90 degres
HALF_TURN = 4 // 180 degres
};
enum TDirection
{
E = 0,
NE = 1,
N = 2,
NW = 3,
W = 4,
SW = 5,
S = 6,
SE = 7,
UNDEFINED = 8
};
enum TMotifDirection
{
SHIFT_E = 1,
SHIFT_NE = 2,
SHIFT_N = 4,
SHIFT_NW = 8,
SHIFT_W = 16,
SHIFT_SW = 32,
SHIFT_S = 64,
SHIFT_SE = 128,
SHIFT_UNDEFINED = 256 // be aware, if you use a byte, it makes 0.
};
enum TCost
{
NO_COST = 0,
ORTHO_COST = 2,
DIAG_COST = 3,
MAX_COST = 3
};
public:
explicit CDirection();
CDirection(CDirection const& dir);
explicit CDirection(TDirection dir);
/// @name user interface assuming the y inversion (sorry).
//@{
explicit CDirection(int deltax, int deltay, bool toCalculate);
// initialisation with a direction depending on deltas (-1,0 or 1)
explicit CDirection(int deltax, int deltay);
// initialisation with a direction depending on deltas (-1,0 or 1)
explicit CDirection(CAngle const& angle);
CAngle getAngle();
sint dx() const;
sint dy() const;
void dxdy(int& dx, int& dy);
//@}
bool isValid() { return _value!=UNDEFINED; }
// add a number of 45 turn
void addStep(TDeltaDirection step);
NLMISC::CVector2f getDirFloat() const;
TDirection getVal() const;
TMotifDirection getShift() const;
bool operator !=(TDirection dir) const;
bool operator != (CDirection const& dir) const;
struct CDirectionData
{
sint dx;
sint dy;
TCost weight;
};
static CDirectionData const directionDatas[];
static TDirection const table[];
// used in pacs (nothing to do here but i haven't enought time to rewrite much code)
uint32 getWeight();
static void getDirectionAround(CAngle const& Angle, CDirection& Dir0, CDirection& Dir1);
private:
void setDxDy(int deltax, int deltay);
TDirection _value;
};
inline
CDirection::CDirection()
: _value(UNDEFINED)
{
}
inline
CDirection::CDirection(CDirection const& dir)
: _value(dir._value)
{
}
inline
CDirection::CDirection(TDirection dir)
: _value(dir)
{
#ifdef NL_DEBUG
nlassert(dir>=E && dir<=UNDEFINED);
#endif
}
inline
CDirection::CDirection(int deltax, int deltay, bool toCalculate)
{
#ifdef NL_DEBUG
nlassert(deltax!=0 || deltay!=0);
#endif
uint absDeltax = abs(deltax);
uint absDeltay = abs(deltay);
if (deltax!=0 && deltay!=0)
{
float ratio = (float)((float)absDeltax/(float)absDeltay);
if (ratio>=0.4141 && ratio<=2.4145) // cos(PI/8)/sin(PI/8) ou sin(PI/8)/cos(PI/8)
{
setDxDy(deltax>0?1:-1, deltay>0?1:-1);
return;
}
}
if (absDeltax>absDeltay)
setDxDy(deltax>0?1:-1, 0);
else
setDxDy(0, deltay>0?1:-1);
}
inline
CDirection::CDirection(int deltax, int deltay)
{
setDxDy(deltax, deltay);
}
inline
CDirection::CDirection(CAngle const& angle)
{
_value = (TDirection)((((sint32)angle.asRawSint16()+65536+4096)/8192)&7); // add 4096 to have a correct angle magnet.
}
inline
CAngle CDirection::getAngle()
{
#ifdef NL_DEBUG
nlassert(isValid());
#endif
return CAngle(_value*8192);
}
inline
sint CDirection::dx() const
{
return directionDatas[_value].dx;
}
inline
sint CDirection::dy() const
{
return directionDatas[_value].dy;
}
inline
void CDirection::dxdy(int& dx, int& dy)
{
CDirectionData const& direction = directionDatas[_value];
dx = direction.dx;
dy = direction.dy;
}
inline
void CDirection::addStep(TDeltaDirection step)
{
#ifdef NL_DEBUG
nlassert(isValid());
#endif
_value = (TDirection)((_value+step)&7);
}
inline
NLMISC::CVector2f CDirection::getDirFloat() const
{
return NLMISC::CVector2f((float)dx(), (float)dy());
}
inline
CDirection::TDirection CDirection::getVal() const
{
return _value;
}
inline
CDirection::TMotifDirection CDirection::getShift() const
{
return (TMotifDirection)(1<<_value);
}
inline
bool CDirection::operator !=(TDirection dir) const
{
return _value!=dir;
}
inline
bool CDirection::operator != (CDirection const& dir) const
{
return _value!=dir._value;
}
inline
uint32 CDirection::getWeight()
{
return directionDatas[_value].weight;
}
inline
void CDirection::getDirectionAround(CAngle const& Angle, CDirection& Dir0, CDirection& Dir1)
{
sint value = Angle.asRawSint16()&(~16383); //8191);
Dir0 = CDirection(CAngle(value));
value += 16384; //8192;
Dir1 = CDirection(CAngle(value));
}
inline
void CDirection::setDxDy(int deltax, int deltay)
{
#ifdef NL_DEBUG
nlassert( deltax>=-1 && deltax<=1 && deltay>=-1 && deltay<=1);
#endif
_value = table[1+deltax+(1+deltay)*3];
#ifdef NL_DEBUG
nlassert(dx()==deltax && dy()==deltay);
#endif
}
//////////////////////////////////////////////////////////////////////////////
/**
* A map of accessible positions near a given position
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CNeighbourhood
{
public:
/// One bit per direction
bool isValid(CDirection::TDirection dir) const;
bool isValid(CDirection const& dir) const;
void set(CDirection::TDirection dir);
CNeighbourhood();
private:
CNeighbourhood(uint32 neighb);
/// 8 bits for 8 directions
uint32 Neighb;
};
inline
bool CNeighbourhood::isValid(CDirection::TDirection dir) const
{
return (Neighb&CDirection(dir).getShift())!=0;
}
inline
bool CNeighbourhood::isValid(CDirection const& dir) const
{
return (Neighb&dir.getShift())!=0;
}
inline
void CNeighbourhood::set(CDirection::TDirection dir)
{
Neighb|=CDirection(dir).getShift();
}
inline
CNeighbourhood::CNeighbourhood()
: Neighb(0)
{
}
inline
CNeighbourhood::CNeighbourhood(uint32 neighb)
: Neighb(neighb)
{
}
//////////////////////////////////////////////////////////////////////////////
/**
* A slot, defining pacs position and linkage to other slots
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CUnitSlot
{
public:
// 12 bits 0-11 : instance id
// 12 bits 12-23 : surface id
// 2 bits 24-25 : north link
// 2 bits 26-27 : east link
// 2 bits 28-29 : south link
// 2 bits 30-31 : west link
enum
{
InstanceIdOffset = 0,
InstanceIdMask = 0x00000fff,
InstanceIdMax = 4096,
SurfaceIdOffset = 12,
SurfaceIdMask = 0x00fff000,
SurfaceIdMax = 4096,
SlotOffset = 24,
SlotMask = 0xff000000
};
// 6 bits 0-5 topology
// 2 bits 6-7 gabarit
enum
{
TopologyMask = 0x3f,
GabaritMask = 0xc0,
GabaritShift = 6,
};
// 1 bit 0 interior
// 1 bit 1 water
// 1 bit 2 nogo
// 13 bits 3-15 height
enum
{
InteriorMask = 0x0001,
WaterMask = 0x0002,
NoGoMask = 0x0004,
HeightMask = 0xfff8,
HeightShift = 3,
};
public:
/// @name Constructors
//@{
explicit CUnitSlot();
explicit CUnitSlot(uint instanceId, uint surfaceId);
explicit CUnitSlot(NLPACS::UGlobalPosition const& pos);
//@}
// Selectors
uint instanceId() const { return (_Id&InstanceIdMask) >> InstanceIdOffset; }
uint surfaceId () const { return (_Id&SurfaceIdMask) >> SurfaceIdOffset; }
uint height () const { return _Height >> HeightShift; }
CCellLinkage& cellLink() { return *((CCellLinkage*)(((char*)&_Id)+3)); }
CCellLinkage getCellLink() const { return *((CCellLinkage*)(((char*)&_Id)+3)); }
uint topology() const { return (_Topology & TopologyMask); }
uint gabarit() const { return (_Topology & GabaritMask) >> GabaritShift; }
bool interior() const { return (_Height & InteriorMask) != 0; }
bool water() const { return (_Height & WaterMask) != 0; }
bool nogo() const { return (_Height & NoGoMask) != 0; }
/// @name Mutators
//@{
void setInstanceId(uint instanceId);
void setSurface(uint surfaceId);
void setTopology(uint topology);
void setGabarit(uint gabarit);
void setHeight(sint height);
void setInterior(bool interior);
void setWater(bool water);
void setNoGo(bool nogo);
void reset();
//@}
bool used() const;
bool hasSameSurface(const CUnitSlot &slot) const;
void serial(NLMISC::IStream &f);
private:
// _Id is divided this way
// bits 0-11 : instance id
// bits 12-23 : surface id
// bits 24-25 : north link
// bits 26-27 : east link
// bits 28-29 : south link
// bits 30-31 : west link
uint32 _Id;
// 6 bits 0-5 topology
// 2 bits 6-7 gabarit
uint8 _Topology;
// 1 bit 0 interior
// 1 bit 1 water
// 1 bit 2 nogo
// 13 bits 3-15 height
sint16 _Height;
};
// a cell is composed of units of 3 slots
typedef CUnitSlot TCellUnit[3];
inline
CUnitSlot::CUnitSlot()
: _Id(0xffffffff)
, _Topology(0)
, _Height(0)
{
}
inline
CUnitSlot::CUnitSlot(uint instanceId, uint surfaceId)
: _Topology(0)
, _Height(0)
{
#ifdef NL_DEBUG
nlassert(instanceId<InstanceIdMax);
nlassert(surfaceId<SurfaceIdMax);
#endif
_Id = SlotMask + (instanceId << InstanceIdOffset) + (surfaceId << SurfaceIdOffset);
}
inline
CUnitSlot::CUnitSlot(NLPACS::UGlobalPosition const& pos)
: _Topology(0)
, _Height(0)
{
#ifdef NL_DEBUG
nlassert(pos.InstanceId < InstanceIdMax);
nlassert(pos.LocalPosition.Surface < SurfaceIdMax);
#endif
_Id=SlotMask+(pos.InstanceId<<InstanceIdOffset)+(pos.LocalPosition.Surface<<SurfaceIdOffset);
}
inline
void CUnitSlot::setInstanceId(uint instanceId)
{
#ifdef NL_DEBUG
nlassert(instanceId < InstanceIdMax);
#endif
_Id = (_Id & (~InstanceIdMask)) + (instanceId << InstanceIdOffset);
}
inline
void CUnitSlot::setSurface(uint surfaceId)
{
#ifdef NL_DEBUG
nlassert(surfaceId < SurfaceIdMax);
#endif
_Id = (_Id & (~SurfaceIdMask)) + (surfaceId << SurfaceIdOffset);
}
inline
void CUnitSlot::setTopology(uint topology)
{
#ifdef NL_DEBUG
nlassert(topology < 63);
#endif
_Topology = (_Topology & (~TopologyMask)) + (uint8)topology;
}
inline
void CUnitSlot::setGabarit(uint gabarit)
{
#ifdef NL_DEBUG
nlassert(gabarit < 4);
#endif
_Topology = (_Topology & (~GabaritMask)) | (uint8)(gabarit << GabaritShift);
}
inline
void CUnitSlot::setHeight(sint height)
{
#ifdef NL_DEBUG
nlassert(height >= -4096 && height <= 4095);
#endif
_Height = (_Height & (~HeightMask)) | (sint16)(height << HeightShift);
}
inline
void CUnitSlot::setInterior(bool interior)
{
if (interior)
_Height |= InteriorMask;
else
_Height &= ~InteriorMask;
}
inline
void CUnitSlot::setWater(bool water)
{
if (water)
_Height |= WaterMask;
else
_Height &= ~WaterMask;
}
inline
void CUnitSlot::setNoGo(bool nogo)
{
if (nogo)
_Height |= NoGoMask;
else
_Height &= ~NoGoMask;
}
inline
void CUnitSlot::reset()
{
_Id = 0xffffffff;
_Topology = 0;
_Height = 0;
}
inline
bool CUnitSlot::used() const
{
return _Id != 0xffffffff;
}
inline
bool CUnitSlot::hasSameSurface(const CUnitSlot &slot) const
{
return ((slot._Id ^ _Id) & (~SlotMask)) == 0;
}
inline
void CUnitSlot::serial(NLMISC::IStream &f)
{
f.serial(_Id);
f.serial(_Topology);
f.serial(_Height);
}
//////////////////////////////////////////////////////////////////////////////
class CMapPosition;
typedef sint32 TMapCoordType;
/**
* A simple 1 axis coordinate
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CMapCoord
{
friend class CMapPosition;
public:
explicit CMapCoord(uint scellId, uint cellId, uint unitId);
private:
explicit CMapCoord() : c(0) { }
explicit CMapCoord(CAICoord const& aiCoord) : c((sint)(floor(aiCoord.asDouble()+0.5))) { }
explicit CMapCoord(sint cc) : c(cc) { }
uint cellIdMask(uint val) const;
uint fullCellIdMask(uint val) const;
uint toUnitId(uint val) const;
uint toCellId(uint val) const;
uint toSuperCellId(uint val) const;
uint unitIdToUInt(uint val) const;
uint cellIdToUInt(uint val) const;
uint superCellIdToUInt(uint val) const;
uint fullCellIdToUInt(uint val) const;
TMapCoordType& cRef();
public:
uint getUnitId () const { return unitIdToUInt(c); }
uint getCellId () const { return cellIdToUInt(c); }
uint getSuperCellId () const { return superCellIdToUInt(c); }
uint getFullCellId () const { return fullCellIdToUInt(c); }
void setUnitId(uint id) { c = fullCellIdMask(c) | toUnitId(id); }
void setCellId(uint id) { c = cellIdMask(c) | toCellId(id); }
bool operator ==(CMapCoord const& cc) const { return c == cc.c; }
bool operator !=(CMapCoord const& cc) const { return c != cc.c; }
CMapCoord operator -(CMapCoord const& cc) const { return CMapCoord(c-cc.c); }
TMapCoordType const& get() const { return c; }
private:
// coordinate
TMapCoordType c;
};
inline
CMapCoord::CMapCoord(uint scellId, uint cellId, uint unitId)
: c(toSuperCellId(scellId) + toCellId(cellId) + toUnitId(unitId))
{
#ifdef NL_DEBUG
nlassert(scellId < 256);
#endif
}
inline
uint CMapCoord::cellIdMask(uint val) const
{
return val&0xff0f;
}
inline
uint CMapCoord::fullCellIdMask(uint val) const
{
return val&0x0fffffff0;
}
inline
uint CMapCoord::toUnitId(uint val) const
{
return val&0x0f;
}
inline
uint CMapCoord::toCellId(uint val) const
{
return (val<<4)&0x0f0;
}
inline
uint CMapCoord::toSuperCellId(uint val) const
{
return (val<<8)&0x0ffff;
}
inline
uint CMapCoord::unitIdToUInt(uint val) const
{
return val&0x0f;
}
inline
uint CMapCoord::cellIdToUInt(uint val) const
{
return (val>>4)&0xf;
}
inline
uint CMapCoord::superCellIdToUInt(uint val) const
{
return (val>>8)&0x0ff;
}
inline
uint CMapCoord::fullCellIdToUInt(uint val) const
{
return (val>>4)&0x0fff;
}
inline
TMapCoordType& CMapCoord::cRef()
{
return c;
}
//////////////////////////////////////////////////////////////////////////////
/**
* A map position, consisting of 2 axis coordinates
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CMapPosition
{
friend class RYPACSCRUNCH::CPacsCruncher;
public:
CMapPosition() { }
CMapPosition(sint x, sint y);
CMapPosition(CMapCoord const& x, CMapCoord const& y);
CMapPosition(CMapPosition const& pos);
CMapPosition(NLMISC::CVectorD const& pos);
CMapPosition(CAIVector const& pos);
CMapPosition(CAICoord const& x, CAICoord const& y);
NLMISC::CVectorD toVectorD() const;
NLMISC::CVector2d toVector2d() const;
CAIVector toAIVector() const;
std::string toString() const;
void setUnitId(uint const xId, uint const yId);
void setNullUnitId();
CMapPosition stepCell(sint dx, sint dy) const;
bool hasSameFullCellId(CMapPosition const& other) const;
CMapPosition operator -(CMapPosition const& other) const;
bool operator ==(CMapPosition const& cc) const;
bool operator !=(CMapPosition const& cc) const;
CMapCoord const& xCoord() const { return _x; }
CMapCoord const& yCoord() const { return _y; }
TMapCoordType const& x() const { return _x.get(); }
TMapCoordType const& y() const { return _y.get(); }
uint32 superCellFastIndex() const;
uint32 rootCellFastIndex() const;
uint32 cellUnitFastIndex() const;
CMapPosition step(sint dx, sint dy) const;
CMapPosition getStepS() const { return step(0, -1); }
CMapPosition getStepN() const { return step(0, +1); }
CMapPosition getStepE() const { return step(+1, 0); }
CMapPosition getStepW() const { return step(-1, 0); }
protected:
// return if we have changed of RootCell ..
bool stepS() { _y.cRef()-=1; return ((_y.cRef()&0xf)==0xf); }
bool stepN() { _y.cRef()+=1; return ((_y.cRef()&0xf)==0x0); }
bool stepW() { _x.cRef()-=1; return ((_x.cRef()&0xf)==0xf); }
bool stepE() { _x.cRef()+=1; return ((_x.cRef()&0xf)==0x0); }
private:
CMapCoord _x;
CMapCoord _y;
};
inline
CMapPosition::CMapPosition(sint x, sint y)
: _x(CMapCoord(x))
, _y(CMapCoord(y))
{
}
inline
CMapPosition::CMapPosition(CMapCoord const& x, CMapCoord const& y)
: _x(x)
, _y(y)
{
}
inline
CMapPosition::CMapPosition(CMapPosition const& pos)
: _x(pos._x)
, _y(pos._y)
{
}
inline
CMapPosition::CMapPosition(NLMISC::CVectorD const& pos)
: _x((uint)floor((pos.x - WorldStartOffset.x)/WorldGridResolution + 0.5))
, _y((uint)floor((pos.y - WorldStartOffset.y)/WorldGridResolution + 0.5))
{
}
inline
CMapPosition::CMapPosition(CAIVector const& pos)
: _x(pos.x())
, _y(pos.y())
{
}
inline
CMapPosition::CMapPosition(CAICoord const& x, CAICoord const& y)
: _x(x)
, _y(y)
{
}
inline
NLMISC::CVectorD CMapPosition::toVectorD() const
{
return NLMISC::CVectorD(WorldStartOffset.x + _x.get()*WorldGridResolution, WorldStartOffset.y + _y.get()*WorldGridResolution, 0.0);
}
inline
NLMISC::CVector2d CMapPosition::toVector2d() const
{
return NLMISC::CVector2d(WorldStartOffset.x + _x.get()*WorldGridResolution, WorldStartOffset.y + _y.get()*WorldGridResolution);
}
inline
CAIVector CMapPosition::toAIVector() const
{
return CAIVector(WorldStartOffset.x + _x.get()*WorldGridResolution, WorldStartOffset.y + _y.get()*WorldGridResolution);
}
inline
std::string CMapPosition::toString() const
{
return toAIVector().toString();
}
inline
void CMapPosition::setUnitId(uint const xId, uint const yId)
{
_x.setUnitId(xId);
_y.setUnitId(yId);
}
inline
void CMapPosition::setNullUnitId()
{
_x.setUnitId(0);
_y.setUnitId(0);
}
inline
CMapPosition CMapPosition::stepCell(sint dx, sint dy) const
{
CMapPosition newMapPos(xCoord().get()+(dx<<4),yCoord().get()+(dy<<4));
newMapPos.setNullUnitId();
return newMapPos;
}
inline
bool CMapPosition::hasSameFullCellId(CMapPosition const& other) const
{
return ( _x.getFullCellId()==other._x.getFullCellId() && _y.getFullCellId()==other._y.getFullCellId() );
}
inline
CMapPosition CMapPosition::operator -(CMapPosition const& other) const
{
return CMapPosition(_x-other._x,_y-other._y);
}
inline
bool CMapPosition::operator ==(CMapPosition const& cc) const
{
return _x==cc._x && _y==cc._y;
}
inline
bool CMapPosition::operator !=(CMapPosition const& cc) const
{
return _x!=cc._x || _y!=cc._y;
}
inline
uint32 CMapPosition::superCellFastIndex() const
{
return ((((uint)y())&(0x0ff<<8)) + xCoord().getSuperCellId());
}
inline
uint32 CMapPosition::rootCellFastIndex() const
{
return ((((uint)y())&0x0f<<4) + xCoord().getCellId());
}
inline
uint32 CMapPosition::cellUnitFastIndex() const
{
return ((yCoord().getUnitId()<<4) + xCoord().getUnitId());
}
inline
CMapPosition CMapPosition::step(sint dx, sint dy) const
{
return CMapPosition(_x.get() + dx, _y.get() + dy);
}
//////////////////////////////////////////////////////////////////////////////
/**
* Motion map interface
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CGridDirectionLayer
: public I16x16Layer
{
public:
CDirection getDirection(int y, int x) const;
CDirection getDirection(CMapPosition const& pos) const;
void setDirection(int y, int x, CDirection dir);
};
inline
CDirection CGridDirectionLayer::getDirection(int y, int x) const
{
return CDirection((CDirection::TDirection)get(y, x));
}
inline
CDirection CGridDirectionLayer::getDirection(CMapPosition const& pos) const
{
return CDirection((CDirection::TDirection)get(pos.yCoord().getUnitId(), pos.xCoord().getUnitId()));
}
inline
void CGridDirectionLayer::setDirection(int y, int x, CDirection dir)
{
this->set((uint)y, (uint)x, (sint)dir.getVal());
}
//////////////////////////////////////////////////////////////////////////////
class CDirectionLayer
{
public:
CDirectionLayer();
void serial(NLMISC::IStream& f);
CGridDirectionLayer* getGridLayer(int y, int x);
void setGridLayer(int y, int x, I16x16Layer* layer);
void dump();
private:
// Grid[1][1] is central cell
I16x16Layer *Grid[3][3];
};
inline
CDirectionLayer::CDirectionLayer()
{
uint i, j;
for (i=0; i<3; ++i)
for (j=0; j<3; ++j)
Grid[i][j] = NULL;
}
inline
CGridDirectionLayer* CDirectionLayer::getGridLayer(int y, int x)
{
return static_cast<CGridDirectionLayer*>(Grid[y][x]);
}
inline
void CDirectionLayer::setGridLayer(int y, int x, I16x16Layer* layer)
{
Grid[y][x] = layer;
}
inline
void CDirectionLayer::dump()
{
char output[16*3][16*3];
for (sint i=2; i>=0; --i)
for (sint j=0; j<3; ++j)
for (sint y=15; y>=0; --y)
for (sint x=0; x<16; ++x)
{
CGridDirectionLayer* gridDirectionLayer = getGridLayer(i,j);
CDirection motion;
if (gridDirectionLayer)
motion = gridDirectionLayer->getDirection(y,x);
char c = ' ';
switch (motion.getVal())
{
case CDirection::N:
c = '^';
break;
case CDirection::S:
c = 'v';
break;
case CDirection::E:
c = '>';
break;
case CDirection::W:
c = '<';
break;
case CDirection::NE:
c = '7';
break;
case CDirection::SW:
c = 'L';
break;
case CDirection::NW:
c = 'r';
break;
case CDirection::SE:
c = '\\';
break;
// case 255:
// c = ' ';
// break;
default:
c = 'o';
break;
}
output[y+i*16][x+j*16] = c;
}
char op[256];
nlinfo(" \t0123456789ABCDEF0123456789ABCDEF0123456789ABCDEF");
for (sint i=47; i>=0; --i)
{
sint j;
for (j=0; j<48; ++j)
op[j] = output[i][j];
op[j] = '\0';
nlinfo("%04X\t%s", (i&15), op);
}
}
//////////////////////////////////////////////////////////////////////////////
class CDirectionMap
{
public:
CDirectionLayer* Layers[3];
CDirectionMap();
void serial(NLMISC::IStream& f);
void dump();
};
inline
CDirectionMap::CDirectionMap()
{
Layers[0] = NULL;
Layers[1] = NULL;
Layers[2] = NULL;
}
inline
void CDirectionMap::dump()
{
for (uint i=0; i<3; ++i)
{
nlinfo("Layer %d", i);
if (Layers[i] != NULL)
Layers[i]->dump();
else
nlinfo("Empty");
}
}
//////////////////////////////////////////////////////////////////////////////
class CWorldMap;
class CRootCell;
class CWorldPosition;
class CTopology
{
public:
/// A topology Id, representing cell and topology
class TTopologyId
{
public:
enum
{
UNDEFINED_TOPOLOGY = 0xffffffff
};
public:
explicit TTopologyId();
explicit TTopologyId(CMapPosition const& pos, uint topology);
// For test only
explicit TTopologyId(uint32 id);
bool haveSameCellPos(TTopologyId const& other) const;
CMapPosition getMapPosition() const;
uint getTopologyIndex() const;
bool isValid() const;
bool operator <(TTopologyId const& other) const;
bool operator ==(TTopologyId const& other) const;
bool operator !=(TTopologyId const& other) const;
void serial(NLMISC::IStream& f);
uint32 getVal() const;
private:
uint32 _value;
};
class TTopologyRef
: public TTopologyId
{
friend class CWorldPosition;
public:
TTopologyRef(CWorldPosition const& pos);
TTopologyRef();
explicit TTopologyRef(TTopologyId const& id, CRootCell* rootCell);
CTopology const& getCstTopologyNode() const;
void setRootCell(CRootCell* rootCell);
void serial(NLMISC::IStream& f);
CRootCell const* getRootCell() const;
private:
TTopologyRef(CWorldPosition const& pos, CRootCell const* rootCell);
CRootCell const* _RootCell;
};
/// A link to a neighbour, including mean distance to it
class CNeighbourLink
{
public:
explicit CNeighbourLink();
explicit CNeighbourLink(TTopologyRef const& ref, float distance);
CNeighbourLink(CNeighbourLink const& other);
void serial(NLMISC::IStream& f);
TTopologyRef const& getTopologyRef() const;
void updateTopologyRef(CWorldMap* worldMapPtr);
float getDistance() const;
private:
TTopologyRef _Ref;
float _Distance;
};
void updateTopologyRef(CWorldMap* worldMapPtr);
bool isInInterior() const { return (Flags & Interior) != 0; }
bool isInWater() const { return (Flags & Water) != 0; }
bool isInNogo() const { return (Flags & NoGo) != 0; }
TAStarFlag getFlags() const { return (TAStarFlag)Flags; }
uint32 getMasterTopo(TAStarFlag const& flags) const;
uint32 getMasterTopo(bool allowWater, bool allowNoGo) const;
uint32& getMasterTopoRef(bool allowWater, bool allowNoGo);
bool isCompatible(bool allowWater, bool allowNoGo) const;
/// The Id of this topology
TTopologyId Id;
/// The direction map to access this topology
CDirectionMap* DirectionMap;
/// The neighbour topologies that have access to this topology
std::vector<CNeighbourLink> Neighbours;
/// Flags of the topology
uint16 Flags; // why doing this (uint16), its not align so no gain in memory and it causes access cost !
/// Master topologies
uint32 MasterTopL; // only landscape
uint32 MasterTopLW; // landscape and water
uint32 MasterTopLN; // landscape and nogo
uint32 MasterTopLNW; // landscape and water and nogo
/// Topology center, for A* purpose
NLMISC::CVector Position;
CTopology();
void serial(NLMISC::IStream& f);
};
inline
CTopology::TTopologyId::TTopologyId()
: _value(UNDEFINED_TOPOLOGY)
{
}
inline
CTopology::TTopologyId::TTopologyId(CMapPosition const& pos, uint topology)
{
#ifdef NL_DEBUG
nlassert(topology < 256);
#endif
_value = (pos.yCoord().getFullCellId() << 20) + (pos.xCoord().getFullCellId() << 8) + topology;
}
inline
CTopology::TTopologyId::TTopologyId(uint32 id)
{
_value = id;
}
inline
bool CTopology::TTopologyId::haveSameCellPos(TTopologyId const& other) const
{
return ((other._value^_value)&0x0ffffff00)==0;
}
inline
CMapPosition CTopology::TTopologyId::getMapPosition() const
{
return CMapPosition((_value&0x000fff00) >> (8-4),(_value&0xfff00000) >> (20-4));
}
inline
uint CTopology::TTopologyId::getTopologyIndex() const
{
return _value&0x000000ff;
}
inline
bool CTopology::TTopologyId::isValid() const
{
return _value!=UNDEFINED_TOPOLOGY;
}
inline
bool CTopology::TTopologyId::operator <(TTopologyId const& other) const
{
return _value<other._value;
}
inline
bool CTopology::TTopologyId::operator ==(TTopologyId const& other) const
{
return _value==other._value;
}
inline
bool CTopology::TTopologyId::operator !=(TTopologyId const& other) const
{
return _value!=other._value;
}
inline
void CTopology::TTopologyId::serial(NLMISC::IStream& f)
{
f.serial(_value);
}
inline
uint32 CTopology::TTopologyId::getVal() const
{
return _value;
}
inline
CTopology::TTopologyRef::TTopologyRef()
: TTopologyId()
, _RootCell(NULL)
{
}
inline
CTopology::TTopologyRef::TTopologyRef(TTopologyId const& id, CRootCell* rootCell)
: TTopologyId(id)
{
setRootCell(rootCell);
}
inline
void CTopology::TTopologyRef::setRootCell(CRootCell* rootCell)
{
_RootCell = rootCell;
}
inline
void CTopology::TTopologyRef::serial(NLMISC::IStream& f)
{
TTopologyId::serial(f);
}
inline
CRootCell const* CTopology::TTopologyRef::getRootCell() const
{
return _RootCell;
}
inline
CTopology::CNeighbourLink::CNeighbourLink()
: _Ref()
{
}
inline
CTopology::CNeighbourLink::CNeighbourLink(TTopologyRef const& ref, float distance)
: _Ref(ref)
, _Distance(distance)
{
}
inline
CTopology::CNeighbourLink::CNeighbourLink(CNeighbourLink const& other)
: _Ref(other._Ref)
, _Distance(other._Distance)
{
}
inline
void CTopology::CNeighbourLink::serial(NLMISC::IStream& f)
{
f.serial(_Ref, _Distance);
}
inline
CTopology::TTopologyRef const& CTopology::CNeighbourLink::getTopologyRef() const
{
return _Ref;
}
inline
float CTopology::CNeighbourLink::getDistance() const
{
return _Distance;
}
inline
void CTopology::updateTopologyRef(CWorldMap* worldMapPtr)
{
std::vector<CNeighbourLink>::iterator it=Neighbours.begin(), itEnd=Neighbours.end();
while (it!=itEnd)
{
(*it).updateTopologyRef(worldMapPtr);
++it;
}
}
inline
uint32 CTopology::getMasterTopo(TAStarFlag const& flags) const
{
switch (flags&WaterAndNogo)
{
case Nothing:
default:
return MasterTopL;
case Water:
return MasterTopLW;
case NoGo:
return MasterTopLN;
case WaterAndNogo:
return MasterTopLNW;
}
}
inline
uint32 CTopology::getMasterTopo(bool allowWater, bool allowNoGo) const
{
if (allowWater)
{
if (allowNoGo)
return MasterTopLNW;
return MasterTopLW;
}
if (allowNoGo)
return MasterTopLN;
return MasterTopL;
}
inline
uint32& CTopology::getMasterTopoRef(bool allowWater, bool allowNoGo)
{
if (allowWater)
{
if (allowNoGo)
return MasterTopLNW;
return MasterTopLW;
}
if (allowNoGo)
return MasterTopLN;
return MasterTopL;
}
inline
bool CTopology::isCompatible(bool allowWater, bool allowNoGo) const
{
return (allowWater || !isInWater()) && (allowNoGo || !isInNogo());
}
inline
CTopology::CTopology()
: Id()
, DirectionMap(NULL)
, Flags(Nothing)
, MasterTopL(TTopologyId::UNDEFINED_TOPOLOGY)
, MasterTopLW(TTopologyId::UNDEFINED_TOPOLOGY)
, MasterTopLN(TTopologyId::UNDEFINED_TOPOLOGY)
, MasterTopLNW(TTopologyId::UNDEFINED_TOPOLOGY)
{
}
// convert a 2 characters string to uint16
#ifdef NL_LITTLE_ENDIAN
# define NELID16(x) (uint16((x[0] << 8) | (x[1])))
#else
# define NELID16(x) (uint16((x[1] << 8) | (x[0])))
#endif
inline
void CTopology::serial(NLMISC::IStream& f)
{
uint version = 0;
uint16 check = NELID16("Tp");
f.serial(check);
if (check != NELID16("TP"))
{
nlassert(check == NELID16("Tp"));
version = f.serialVersion(3);
}
f.serial(Id);
if (f.isReading())
{
delete DirectionMap;
DirectionMap = NULL;
}
bool present = (DirectionMap != NULL);
f.serial(present);
if (present)
{
if (f.isReading())
DirectionMap = new CDirectionMap();
f.serial(*DirectionMap);
}
f.serialCont(Neighbours);
f.serial(Position);
if (version >= 3)
{
f.serial(Flags);
f.serial(MasterTopL);
f.serial(MasterTopLW);
f.serial(MasterTopLN);
f.serial(MasterTopLNW);
}
else
{
nlassert(f.isReading());
Flags = Nothing;
if (version >= 1)
{
bool interior;
f.serial(interior);
if (interior)
Flags |= Interior;
}
if (version >= 2)
{
bool water;
f.serial(water);
if (water)
Flags |= Water;
}
MasterTopL = 0;
MasterTopLW = 0;
MasterTopLN = 0;
MasterTopLNW = 0;
}
}
//////////////////////////////////////////////////////////////////////////////
/**
* CWorldPosition, position referenced by a map position and a slot
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CWorldPosition
: public CMapPosition
, public CSlot
{
friend class CWorldMap;
friend class RYPACSCRUNCH::CPacsCruncher;
public:
explicit CWorldPosition();
explicit CWorldPosition(sint x, sint y);
// resumes that the RootCell is valid;
CRootCell const* getRootCell() const { return _RootCell; }
/// In millimeters.
sint32 getMetricHeight() const;
sint32 h() const { return getMetricHeight(); }
CCellLinkage const& getCellLinkage() const { return _cellLinkage; }
CTopology::TTopologyRef getTopologyRef() const;
bool isInInterior() const;
CTopology const& getTopologyNode() const;
TAStarFlag getFlags() const;
/// Get a vector position from a world position
NLMISC::CVectorD getPosition() const;
bool operator ==(CWorldPosition const& cc) const { return CSlot::operator ==(cc) && CMapPosition::operator ==(cc); }
bool operator !=(CWorldPosition const& cc) const { return CSlot::operator !=(cc) || CMapPosition::operator !=(cc); }
private:
CWorldPosition getPosS() const;
CWorldPosition getPosN() const;
CWorldPosition getPosE() const;
CWorldPosition getPosW() const;
void setPosS(CWorldPosition& pos) const;
void setPosN(CWorldPosition& pos) const;
void setPosE(CWorldPosition& pos) const;
void setPosW(CWorldPosition& pos) const;
bool moveS();
bool moveN();
bool moveE();
bool moveW();
void stepS();
void stepN();
void stepE();
void stepW();
CRootCell const* _RootCell;
CCellLinkage _cellLinkage;
explicit CWorldPosition(CRootCell const* cell, CMapPosition const& pos, CSlot const& slot);
explicit CWorldPosition(CRootCell const* cell, CMapPosition const& pos, CSlot const& slot, bool generationOnly);
};
inline
CWorldPosition::CWorldPosition()
: CMapPosition()
, CSlot()
, _RootCell(NULL)
, _cellLinkage(0)
{
}
inline
CWorldPosition::CWorldPosition(sint x, sint y)
: CMapPosition(x, y)
, CSlot()
, _RootCell(NULL)
, _cellLinkage(0)
{
}
inline
CTopology::TTopologyRef CWorldPosition::getTopologyRef() const
{
return CTopology::TTopologyRef(*this, getRootCell());
}
inline
bool CWorldPosition::isInInterior() const
{
return getTopologyRef().getCstTopologyNode().isInInterior();
}
inline
CTopology const& CWorldPosition::getTopologyNode() const
{
return getTopologyRef().getCstTopologyNode();
}
inline
TAStarFlag CWorldPosition::getFlags() const
{
return getTopologyRef().getCstTopologyNode().getFlags(); //Flags;
}
//////////////////////////////////////////////////////////////////////////////
class CCompatibleResult
{
public:
CCompatibleResult(TAStarFlag movementFlags = Interior, uint32 choosenMasterTopo = ~0);
void set(TAStarFlag movementFlags, uint32 choosenMasterTopo);
void setValid(bool valid = true);
TAStarFlag const& movementFlags() const;
uint32 const& choosenMasterTopo() const;
bool const& isValid() const;
private:
TAStarFlag _MovementFlags;
uint32 _ChoosenMasterTopo;
bool _Valid;
};
inline
CCompatibleResult::CCompatibleResult(TAStarFlag movementFlags, uint32 choosenMasterTopo)
: _MovementFlags(movementFlags)
, _ChoosenMasterTopo(choosenMasterTopo)
, _Valid(false)
{
}
inline
void CCompatibleResult::set(TAStarFlag movementFlags, uint32 choosenMasterTopo)
{
_MovementFlags = movementFlags;
_ChoosenMasterTopo = choosenMasterTopo;
}
inline
void CCompatibleResult::setValid(bool valid)
{
_Valid = valid;
}
inline
TAStarFlag const& CCompatibleResult::movementFlags() const
{
return _MovementFlags;
}
inline
uint32 const& CCompatibleResult::choosenMasterTopo() const
{
return _ChoosenMasterTopo;
}
inline
bool const& CCompatibleResult::isValid() const
{
return _Valid;
}
//////////////////////////////////////////////////////////////////////////////
/**
@relates CWorldPosition
*/
void areCompatiblesWithoutStartRestriction(CWorldPosition const& startPos, CWorldPosition const& endPos, TAStarFlag const& denyflags, CCompatibleResult& res, bool allowStartRestriction = false);
//////////////////////////////////////////////////////////////////////////////
/**
* CRootCell, interface for all 16x16 cells in world map
* derivated into CComputeCell (for map computation only), into CSingleLayerCell and CMultiLayerCell
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CRootCell
{
public:
enum TCellType
{
Root = 0,
Compute,
White,
SingleLayer,
MultiLayer
};
public:
CRootCell(CWorldMap const& worldMapPtr);
virtual ~CRootCell() { }
void setFlag(uint32 const flag) { _flag = flag; }
uint32 getFlag() const { return _flag; }
sint32 getMetricHeight(CWorldPosition const& wpos) const;
CWorldMap const& getWorldMapPtr() const { return _WorldMapPtr; }
// mutator (only for build purpose)
CTopology& getTopologyNode(uint topology);
CTopology const& getCstTopologyNode(uint topology) const;
CTopology::TTopologyId getTopologyId(CWorldPosition const& wpos) const;
CTopology::TTopologyRef getTopologyRef(const CWorldPosition&pos) const;
CTopology const& getCstTopologyNode(CTopology::TTopologyId const& id) const;
std::vector<CTopology>& getTopologiesNodes() { return _TopologiesNodes; }
std::vector<CTopology> const& getTopologiesNodes() const { return _TopologiesNodes; }
void setTopologiesNodes(std::vector<CTopology> const& nodes) { _TopologiesNodes = nodes; }
CDirectionMap const* getDirectionMap(uint topology) const;
void setDirectionMap(CDirectionMap* map, uint topology);
void updateTopologyRef(CWorldMap* worldMap);
CWorldPosition const& getWorldPosition(uint ind) const;
void setWorldPosition(CWorldPosition const& pos, uint ind);
virtual CCellLinkage getCellLink(CWorldPosition const& wpos) const = 0;
virtual uint32 nbUsedSlots(CMapPosition const& pos) const = 0;
virtual sint32 maxUsedSlot(CMapPosition const& pos) const = 0;
virtual bool isSlotUsed(CMapPosition const& pos, CSlot const& slot) const = 0;
virtual uint getTopology(CWorldPosition const& wpos) const = 0;
virtual sint getHeight(CWorldPosition const& wpos) const = 0;
// clear height map
virtual void clearHeightMap() = 0;
// serial
virtual void serial(NLMISC::IStream& f) = 0;
// load a cell
static CRootCell* load(NLMISC::IStream& f, CWorldMap const& worldMap);
// save a cell
static void save(NLMISC::IStream& f, CRootCell* cell);
private:
CWorldMap const& _WorldMapPtr; // his owner map;
std::vector<CTopology> _TopologiesNodes;
CWorldPosition _WorldPosition[4]; // 4 random positions for each slots.
uint32 _flag;
};
inline
CRootCell::CRootCell(CWorldMap const& worldMapPtr)
: _WorldMapPtr(worldMapPtr)
{
_flag = 0;
}
inline
sint32 CRootCell::getMetricHeight(CWorldPosition const& wpos) const
{
// check if wpos valid
if (!wpos.isValid())
return 0;
sint32 const z = (getHeight(wpos)*2000 - 1000)&(~3);
uint const top = getTopology(wpos);
if (top<_TopologiesNodes.size() && _TopologiesNodes[top].isInInterior())
return z+2;
return z;
}
inline
CTopology& CRootCell::getTopologyNode(uint topology)
{
if (topology >= _TopologiesNodes.size())
_TopologiesNodes.resize(topology+1);
return _TopologiesNodes[topology];
}
inline
CTopology const& CRootCell::getCstTopologyNode(uint topology) const
{
#if !FINAL_VERSION
nlassert(topology < _TopologiesNodes.size());
#endif
return _TopologiesNodes[topology];
}
inline
CTopology::TTopologyId CRootCell::getTopologyId(CWorldPosition const& wpos) const
{
return CTopology::TTopologyId(wpos, getTopology(wpos));
}
inline
CTopology::TTopologyRef CRootCell::getTopologyRef(const CWorldPosition&pos) const
{
#ifdef NL_DEBUG
nlassert(pos.getRootCell()!=this);
#endif
return CTopology::TTopologyRef(pos);
}
inline
CTopology const& CRootCell::getCstTopologyNode(CTopology::TTopologyId const& id) const
{
return getCstTopologyNode(id.getTopologyIndex());
}
inline
CDirectionMap const* CRootCell::getDirectionMap(uint topology) const
{
return (topology<_TopologiesNodes.size()) ? getCstTopologyNode(topology).DirectionMap : NULL;
}
inline
void CRootCell::setDirectionMap(CDirectionMap* map, uint topology)
{
getTopologyNode(topology).DirectionMap = map;
}
inline
void CRootCell::updateTopologyRef(CWorldMap* worldMap)
{
std::vector<CTopology>::iterator it=_TopologiesNodes.begin(), itEnd=_TopologiesNodes.end();
while (it!=itEnd)
{
(*it).updateTopologyRef(worldMap);
++it;
}
}
inline
CWorldPosition const& CRootCell::getWorldPosition(uint ind) const
{
#ifdef NL_DEBUG
nlassert(ind<4);
#endif
return _WorldPosition[ind];
}
inline
void CRootCell::setWorldPosition(CWorldPosition const& pos, uint ind)
{
#ifdef NL_DEBUG
nlassert(ind<4);
#endif
_WorldPosition[ind] = pos;
}
//////////////////////////////////////////////////////////////////////////////
/**
* A computed 16x16 cell
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CComputeCell
: public CRootCell
{
public:
CComputeCell(CWorldMap const& worldMapPtr);
CCellLinkage getCellLink(CWorldPosition const& wpos) const;
uint32 nbUsedSlots(CMapPosition const& pos) const;
sint32 maxUsedSlot(CMapPosition const& pos) const;
bool isSlotUsed(CMapPosition const& pos, CSlot const& slot) const;
uint getTopology(CWorldPosition const& wpos) const;
sint getHeight(CWorldPosition const& wpos) const;
TCellUnit const& getCellUnitCst(CMapPosition const& pos) const;
CUnitSlot const& getUnitSlotCst(CWorldPosition const& wpos) const;
TCellUnit& getCellUnit(CMapPosition const& pos);
CUnitSlot& getUnitSlot(CWorldPosition const& wpos);
void serial(NLMISC::IStream& f);
void clearHeightMap() { }
private:
TCellUnit const& getCellUnitCst(CWorldPosition const& wpos) const;
// a cell is a grid of 16x16 units
TCellUnit _Grid[16*16];
};
inline
CComputeCell::CComputeCell(CWorldMap const& worldMapPtr)
: CRootCell(worldMapPtr)
{
}
inline
CCellLinkage CComputeCell::getCellLink(CWorldPosition const& wpos) const
{
return getUnitSlotCst(wpos).getCellLink();
}
inline
uint32 CComputeCell::nbUsedSlots(CMapPosition const& pos) const
{
TCellUnit const& cellUnit = getCellUnitCst(pos);
uint32 count = 0;
for (uint slot=0; slot<3; ++slot)
if (cellUnit[slot].getCellLink().used())
++count;
return count;
}
inline
sint32 CComputeCell::maxUsedSlot(CMapPosition const& pos) const
{
TCellUnit const& cellUnit = getCellUnitCst(pos);
sint32 maxs = -1;
for (uint slot=0; slot<3; ++slot)
if (cellUnit[slot].getCellLink().used())
maxs = slot;
return maxs;
}
inline
bool CComputeCell::isSlotUsed(CMapPosition const& pos, CSlot const& slot) const
{
TCellUnit const& cellUnit = getCellUnitCst(pos);
return slot.isValid() ? cellUnit[slot.slot()].getCellLink().used() : false;
}
inline
uint CComputeCell::getTopology(CWorldPosition const& wpos) const
{
return getUnitSlotCst(wpos).topology();
}
inline
sint CComputeCell::getHeight(CWorldPosition const& wpos) const
{
return getUnitSlotCst(wpos).height();
}
inline
TCellUnit const& CComputeCell::getCellUnitCst(CMapPosition const& pos) const
{
return _Grid[pos.cellUnitFastIndex()];
}
inline
CUnitSlot const& CComputeCell::getUnitSlotCst(CWorldPosition const& wpos) const
{
#ifdef NL_DEBUG
nlassert(wpos.isValid());
#endif
return getCellUnitCst(wpos)[wpos.slot()];
}
inline
TCellUnit& CComputeCell::getCellUnit(CMapPosition const& pos)
{
return _Grid[pos.cellUnitFastIndex()];
}
inline
CUnitSlot& CComputeCell::getUnitSlot(CWorldPosition const& wpos)
{
#ifdef NL_DEBUG
nlassert(wpos.isValid());
#endif
return getCellUnit(wpos)[wpos.slot()];
}
inline
TCellUnit const& CComputeCell::getCellUnitCst(CWorldPosition const& wpos) const
{
return _Grid[wpos.cellUnitFastIndex()];
}
//////////////////////////////////////////////////////////////////////////////
/**
* A Single layer 16x16 cell that has not walk constraint (map is completely white)
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CWhiteCell
: public CRootCell
{
public:
CWhiteCell(CWorldMap const& worldMapPtr);
CCellLinkage getCellLink(CWorldPosition const& wpos) const;
uint32 nbUsedSlots(CMapPosition const& pos) const;
sint32 maxUsedSlot(CMapPosition const& pos) const;
bool isSlotUsed(CMapPosition const& pos, CSlot const& slot) const;
uint getTopology(CWorldPosition const& wpos) const;
sint getHeight(CWorldPosition const& wpos) const;
void serial(NLMISC::IStream& f);
void clearHeightMap();
void setHeightMap(I16x16Layer* heightMap);
private:
I16x16Layer* _HeightMap;
};
inline
CWhiteCell::CWhiteCell(CWorldMap const& worldMapPtr)
: CRootCell(worldMapPtr), _HeightMap(NULL)
{
}
inline
CCellLinkage CWhiteCell::getCellLink(CWorldPosition const& wpos) const
{
return CCellLinkage(0);
}
inline
uint32 CWhiteCell::nbUsedSlots(CMapPosition const& pos) const
{
return 1;
}
inline
sint32 CWhiteCell::maxUsedSlot(CMapPosition const& pos) const
{
return 0;
}
inline
bool CWhiteCell::isSlotUsed(CMapPosition const& pos, CSlot const& slot) const
{
return slot.slot() == 0;
}
inline
uint CWhiteCell::getTopology(CWorldPosition const& wpos) const
{
return 0;
}
inline
sint CWhiteCell::getHeight(CWorldPosition const& wpos) const
{
return (_HeightMap != NULL) ? _HeightMap->get(wpos.yCoord().getUnitId(), wpos.xCoord().getUnitId()) : 0;
}
inline
void CWhiteCell::serial(NLMISC::IStream& f)
{
f.serialCheck(NELID16("WC"));
if (f.isReading())
_HeightMap = I16x16Layer::load(f);
else
I16x16Layer::save(f, _HeightMap);
}
inline
void CWhiteCell::clearHeightMap()
{
if (_HeightMap)
delete _HeightMap;
_HeightMap = NULL;
}
inline
void CWhiteCell::setHeightMap(I16x16Layer* heightMap)
{
_HeightMap = heightMap;
}
//////////////////////////////////////////////////////////////////////////////
/**
* A Single layer 16x16 cell
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CSingleLayerCell
: public CRootCell
{
protected:
bool testPos(uint i, uint j) const { return (_Map[i] & _MaskMap[j]) != 0; }
void setPos(uint i, uint j, bool p) { _Map[i] = (p ? (_Map[i] | _MaskMap[j]) : (_Map[i] & (~_MaskMap[j]))); }
public:
CSingleLayerCell(CWorldMap const& worldMapPtr);
CCellLinkage getCellLink(CWorldPosition const& wpos) const;
uint32 nbUsedSlots(CMapPosition const& pos) const;
sint32 maxUsedSlot(CMapPosition const& pos) const;
bool isSlotUsed(CMapPosition const& pos, CSlot const& slot) const;
uint getTopology(CWorldPosition const& wpos) const;
sint getHeight(CWorldPosition const& wpos) const;
bool testPos(CMapPosition const& pos) const;
void setPos(CMapPosition const& pos, bool p);
void setSLink(uint i, bool p) { _SLinks = p ? (_SLinks | _MaskMap[i]) : (_SLinks & (~_MaskMap[i])); }
void setNLink(uint i, bool p) { _NLinks = p ? (_NLinks | _MaskMap[i]) : (_NLinks & (~_MaskMap[i])); }
void setELink(uint i, bool p) { _ELinks = p ? (_ELinks | _MaskMap[i]) : (_ELinks & (~_MaskMap[i])); }
void setWLink(uint i, bool p) { _WLinks = p ? (_WLinks | _MaskMap[i]) : (_WLinks & (~_MaskMap[i])); }
void setTopologies(I16x16Layer* topology);
void setHeightMap(I16x16Layer* heightMap);
virtual void serial(NLMISC::IStream& f);
void clearHeightMap();
private:
/// The map of accessible positions
uint16 _Map[16];
/// The north links, true if north position is accessible
uint16 _SLinks;
uint16 _NLinks;
uint16 _ELinks;
uint16 _WLinks;
// topology layer
I16x16Layer* _Topologies;
// height map
I16x16Layer* _HeightMap;
static uint16 _MaskMap[16];
static bool _Initialized;
};
inline
CSingleLayerCell::CSingleLayerCell(CWorldMap const& worldMapPtr)
: CRootCell(worldMapPtr)
{
for (uint i=0; i<16; ++i)
_Map[i] = 0;
_SLinks = 0;
_NLinks = 0;
_ELinks = 0;
_WLinks = 0;
_Topologies = NULL;
_HeightMap = NULL;
if (!_Initialized)
{
for (uint i=0; i<16; ++i)
_MaskMap[i] = (1 << (15-i));
_Initialized = true;
}
}
inline
CCellLinkage CSingleLayerCell::getCellLink(CWorldPosition const& wpos) const
{
uint xi = wpos.xCoord().getUnitId();
uint yi = wpos.yCoord().getUnitId();
CCellLinkage l(0);
l |= ((xi > 0 && testPos(yi, xi-1)) || (xi == 0 && (_WLinks&_MaskMap[yi]))) ? 0 : CCellLinkage::WestSlotMask;
l |= ((xi < 15 && testPos(yi, xi+1)) || (xi == 15 && (_ELinks&_MaskMap[yi]))) ? 0 : CCellLinkage::EastSlotMask;
l |= ((yi > 0 && testPos(yi-1, xi)) || (yi == 0 && (_SLinks&_MaskMap[xi]))) ? 0 : CCellLinkage::SouthSlotMask;
l |= ((yi < 15 && testPos(yi+1, xi)) || (yi == 15 && (_NLinks&_MaskMap[xi]))) ? 0 : CCellLinkage::NorthSlotMask;
return l;
}
inline
uint32 CSingleLayerCell::nbUsedSlots(CMapPosition const& pos) const
{
return testPos(pos) ? 1 : 0;
}
inline
sint32 CSingleLayerCell::maxUsedSlot(CMapPosition const& pos) const
{
return testPos(pos) ? 0 : -1;
}
inline
bool CSingleLayerCell::isSlotUsed(CMapPosition const& pos, CSlot const& slot) const
{
return slot.slot() == 0 && testPos(pos);
}
inline
uint CSingleLayerCell::getTopology(CWorldPosition const& wpos) const
{
return (_Topologies != NULL) ? _Topologies->get(wpos.yCoord().getUnitId(), wpos.xCoord().getUnitId()) : 0;
}
inline
sint CSingleLayerCell::getHeight(CWorldPosition const& wpos) const
{
return (_HeightMap != NULL) ? _HeightMap->get(wpos.yCoord().getUnitId(), wpos.xCoord().getUnitId()) : 0;
}
inline
bool CSingleLayerCell::testPos(CMapPosition const& pos) const
{
return testPos(pos.yCoord().getUnitId(), pos.xCoord().getUnitId());
}
inline
void CSingleLayerCell::setPos(CMapPosition const& pos, bool p)
{
setPos(pos.yCoord().getUnitId(), pos.xCoord().getUnitId(), p);
}
inline
void CSingleLayerCell::setTopologies(I16x16Layer* topology)
{
delete _Topologies;
_Topologies = topology;
}
inline
void CSingleLayerCell::setHeightMap(I16x16Layer* heightMap)
{
if (_HeightMap)
delete _HeightMap;
_HeightMap = heightMap;
}
inline
void CSingleLayerCell::clearHeightMap()
{
delete _HeightMap;
_HeightMap = NULL;
}
//////////////////////////////////////////////////////////////////////////////
/**
* A Multiple layer 16x16 cell (maximum 3 layers)
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CMultiLayerCell
: public CRootCell
{
protected:
class CCellLayer
{
friend class CMultiLayerCell; // for build features.
public:
CCellLinkage const& getCellLinkage(CMapPosition const& pos) const;
uint8 getTopology(CMapPosition const& pos) const;
I16x16Layer* getHeightMap() { return _HeightMap; }
private:
CCellLinkage& cellLinkage(CMapPosition const& pos);
private:
CCellLinkage _Layer[16*16];
uint8 _Topology[16*16];
I16x16Layer* _HeightMap;
};
public:
CMultiLayerCell(CWorldMap const& worldMapPtr);
virtual ~CMultiLayerCell();
CCellLinkage getCellLink(CWorldPosition const& wpos) const;
uint32 nbUsedSlots(CMapPosition const& pos) const;
sint32 maxUsedSlot(CMapPosition const& pos) const;
bool isSlotUsed(CMapPosition const& pos, CSlot const& slot) const;
uint getTopology(CWorldPosition const& wpos) const;
sint getHeight(CWorldPosition const& wpos) const;
virtual void serial(NLMISC::IStream& f);
void setLinks(CWorldPosition const& wpos, CCellLinkage links);
void setTopology(CWorldPosition const& wpos, uint topology);
void setHeightMap(CSlot const& slot, I16x16Layer* heightMap);
void clearHeightMap();
private:
// each layer is allocated in memory
// the 3 layers available
CCellLayer* _Layers[3];
};
inline
CCellLinkage const& CMultiLayerCell::CCellLayer::getCellLinkage(CMapPosition const& pos) const
{
return _Layer[pos.cellUnitFastIndex()]; //yCoord().getUnitId()][pos.xCoord().getUnitId()];
}
inline
uint8 CMultiLayerCell::CCellLayer::getTopology(CMapPosition const& pos) const
{
return _Topology[pos.cellUnitFastIndex()]; //yCoord().getUnitId()][pos.xCoord().getUnitId()];
}
inline
CCellLinkage& CMultiLayerCell::CCellLayer::cellLinkage(CMapPosition const& pos)
{
return _Layer[pos.cellUnitFastIndex()]; //yCoord().getUnitId()][pos.xCoord().getUnitId()];
}
inline
CMultiLayerCell::CMultiLayerCell(CWorldMap const& worldMapPtr)
: CRootCell(worldMapPtr)
{
_Layers[0] = NULL;
_Layers[1] = NULL;
_Layers[2] = NULL;
}
inline
CMultiLayerCell::~CMultiLayerCell()
{
delete [] _Layers[0];
delete [] _Layers[1];
delete [] _Layers[2];
}
inline
CCellLinkage CMultiLayerCell::getCellLink(CWorldPosition const& wpos) const
{
#ifdef NL_DEBUG
nlassert(wpos.isValid());
#endif
CCellLayer* cellLayerPt=_Layers[wpos.slot()];
return (!cellLayerPt) ? CCellLinkage() : cellLayerPt->getCellLinkage(wpos);
}
inline
uint32 CMultiLayerCell::nbUsedSlots(CMapPosition const& pos) const
{
uint32 ns = 0;
for (uint32 slot=0; slot<3; ++slot)
{
CCellLayer* cellLayerPt=_Layers[slot];
if (cellLayerPt && cellLayerPt->cellLinkage(pos).used())
++ns;
}
return ns;
}
inline
sint32 CMultiLayerCell::maxUsedSlot(CMapPosition const& pos) const
{
sint32 maxs = -1;
for (uint32 slot=0; slot<3; ++slot)
{
CCellLayer* cellLayerPt=_Layers[slot];
if (cellLayerPt && cellLayerPt->cellLinkage(pos).used())
maxs = slot;
}
return maxs;
}
inline
bool CMultiLayerCell::isSlotUsed(CMapPosition const& pos, CSlot const& slot) const
{
if (!slot.isValid())
return false;
CCellLayer* cellLayerPt = _Layers[slot.slot()];
return (cellLayerPt && cellLayerPt->cellLinkage(pos).used());
}
inline
uint CMultiLayerCell::getTopology(CWorldPosition const& wpos) const
{
#ifdef NL_DEBUG
nlassert(wpos.isValid());
#endif
CCellLayer* cellLayerPt = _Layers[wpos.slot()];
return (!cellLayerPt) ? 0 : cellLayerPt->getTopology(wpos);
}
inline
sint CMultiLayerCell::getHeight(CWorldPosition const& wpos) const
{
#ifdef NL_DEBUG
nlassert(wpos.isValid());
#endif
CCellLayer* cellLayerPt = _Layers[wpos.slot()];
return (!cellLayerPt || !cellLayerPt->getHeightMap()) ? 0 : cellLayerPt->getHeightMap()->get(wpos.yCoord().getUnitId(), wpos.xCoord().getUnitId());
}
inline
void CMultiLayerCell::setLinks(CWorldPosition const& wpos, CCellLinkage links)
{
#ifdef NL_DEBUG
nlassert(wpos.isValid());
#endif
CCellLayer* cellLayerPt = _Layers[wpos.slot()];
if (!cellLayerPt)
{
cellLayerPt = new CCellLayer();
_Layers[wpos.slot()] = cellLayerPt;
for (uint i=0; i<16*16; ++i)
cellLayerPt->_Topology[i] = 0;
cellLayerPt->_HeightMap = NULL;
}
#ifdef NL_DEBUG
nlassert(cellLayerPt);
#endif
cellLayerPt->cellLinkage(wpos)=links;
}
inline
void CMultiLayerCell::setTopology(CWorldPosition const& wpos, uint topology)
{
#ifdef NL_DEBUG
nlassert(topology < 256);
nlassert(wpos.isValid());
#endif
CCellLayer* cellLayerPt = _Layers[wpos.slot()];
#ifdef NL_DEBUG
nlassert(cellLayerPt);
#endif
cellLayerPt->_Topology[wpos.cellUnitFastIndex()]=(uint8)topology;
}
inline
void CMultiLayerCell::setHeightMap(CSlot const& slot, I16x16Layer* heightMap)
{
#ifdef NL_DEBUG
nlassert(slot.isValid());
#endif
CCellLayer* cellLayerPt = _Layers[slot.slot()];
#ifdef NL_DEBUG
nlassert(cellLayerPt);
#endif
if (cellLayerPt->_HeightMap)
delete cellLayerPt->_HeightMap;
cellLayerPt->_HeightMap = heightMap;
}
inline
void CMultiLayerCell::clearHeightMap()
{
for (CSlot i(0); i.isValid(); ++i)
{
CCellLayer* cellLayerPt = _Layers[i.slot()];
if (cellLayerPt)
{
delete cellLayerPt->_HeightMap;
cellLayerPt->_HeightMap=NULL;
}
}
}
//////////////////////////////////////////////////////////////////////////////
/**
* A CSuperCell of basically 16x16 CCells
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CSuperCell
{
public:
CSuperCell(CWorldMap const& worldMap);
virtual ~CSuperCell();
// get a const cell (might be NULL)
CRootCell const* getRootCellCst(CMapPosition const& pos) const;
// get a const cell (might be NULL)
CRootCell* getRootCell(CMapPosition const& pos);
void updateTopologyRef(CWorldMap* worldMap);
void countCells(uint& compute, uint& white, uint& simple, uint& multi, uint& other) const;
// set a cell
void setRootCell(CMapPosition const& pos, CRootCell* cell);
//
// compute cell selectors
//
// get a cell
CComputeCell* getComputeCell(CMapPosition const& pos);
// get a const cell
CComputeCell const* getComputeCell(CMapPosition const& pos) const;
// get a slot in a cell
CUnitSlot getUnitSlot(CWorldPosition const& wpos) const;
// get a slot in super cell
CUnitSlot& getUnitSlot(CWorldPosition const& wpos);
TCellUnit& getCellUnit(CMapPosition const& pos);
void serial(NLMISC::IStream& f);
void markRootCell(uint32 const flag) const;
private:
// a super cell is composed of 16x16 pointers to cells, initially NULL
CRootCell* _Grid[16*16];
CWorldMap const& _WorldMap;
};
inline
CSuperCell::CSuperCell(CWorldMap const& worldMap)
: _WorldMap(worldMap)
{
for (uint i=0;i<16*16;i++)
_Grid[i] = NULL;
}
inline
CSuperCell::~CSuperCell()
{
for (uint i=0;i<16*16;i++)
if (_Grid[i])
delete _Grid[i];
}
inline
CRootCell const* CSuperCell::getRootCellCst(CMapPosition const& pos) const
{
return _Grid[pos.rootCellFastIndex()];
}
inline
CRootCell* CSuperCell::getRootCell(CMapPosition const& pos)
{
return _Grid[pos.rootCellFastIndex()];
}
inline
void CSuperCell::setRootCell(CMapPosition const& pos, CRootCell* cell)
{
CRootCell*& rootCell = _Grid[pos.rootCellFastIndex()];
if (rootCell==cell)
return;
delete rootCell;
rootCell = cell;
}
inline
CComputeCell* CSuperCell::getComputeCell(CMapPosition const& pos)
{
CRootCell*& rootCell = _Grid[pos.rootCellFastIndex()];
if (!rootCell)
rootCell = new CComputeCell(_WorldMap);
#ifdef NL_DEBUG
nlassert(rootCell);
nlassert(dynamic_cast<CComputeCell*>(rootCell));
#endif
return static_cast<CComputeCell*>(rootCell);
}
inline
CComputeCell const* CSuperCell::getComputeCell(CMapPosition const& pos) const
{
CRootCell const* const& rootCell = _Grid[pos.rootCellFastIndex()];
if (!rootCell)
return NULL;
#ifdef NL_DEBUG
nlassert(dynamic_cast<CComputeCell const*>(rootCell));
#endif
return static_cast<CComputeCell const*>(rootCell);
}
inline
CUnitSlot CSuperCell::getUnitSlot(CWorldPosition const& wpos) const
{
CComputeCell const* cell = getComputeCell(wpos);
return !cell ? CUnitSlot() : cell->getUnitSlotCst(wpos);
}
inline
CUnitSlot& CSuperCell::getUnitSlot(CWorldPosition const& wpos)
{
CComputeCell* cell = getComputeCell(wpos);
return cell->getUnitSlot(wpos);
}
inline
TCellUnit& CSuperCell::getCellUnit(CMapPosition const& pos)
{
CComputeCell* cell = getComputeCell(pos);
return cell->getCellUnit(pos);
}
inline
void CSuperCell::markRootCell(uint32 const flag) const
{
for (uint32 i=0; i<256; ++i)
{
if (_Grid[i])
_Grid[i]->setFlag(flag);
}
}
//////////////////////////////////////////////////////////////////////////////
/**
* The A* Path structure, computed by the WorldMap
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CAStarPath
{
friend class CWorldMap;
public:
std::vector<CTopology::TTopologyRef> const& topologiesPath() const { return _TopologiesPath; }
std::vector<CTopology::TTopologyRef>& topologiesPathForCalc() { return _TopologiesPath; }
CWorldPosition const& getStartPos() const { return _Start; }
void setStartPos(CWorldPosition const& pos) { _Start = pos; }
CWorldPosition const& getEndPos() const { return _End; }
void setEndPos(CWorldPosition const& pos) { _End = pos; }
private:
std::vector<CTopology::TTopologyRef> _TopologiesPath;
CWorldPosition _Start;
CWorldPosition _End;
};
//////////////////////////////////////////////////////////////////////////////
/**
* The Inside A* Path structure, computed by the WorldMap
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CInsideAStarPath
{
friend class CWorldMap;
public:
CWorldPosition const& getStartPos() const { return _Start; }
void setStartPos(CWorldPosition const& pos) { _Start = pos; }
CWorldPosition const& getEndPos() const { return _End; }
void setEndPos(CWorldPosition const& pos) { _End = pos; }
std::vector<CDirection>& getStepPathForCalc() { return _StepPath; }
private:
CWorldPosition _Start;
CWorldPosition _End;
std::vector<CDirection> _StepPath;
};
//////////////////////////////////////////////////////////////////////////////
/**
* A template Heap implementation
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
template <typename T, typename V>
class CHeap
{
public:
typedef std::pair<T, V> THeapNode;
public:
CHeap();
/// clear Heap
void clear() { _Heap.resize(1); }
/// test heap is empty or not
bool empty() const { return _Heap.size() <= 1; }
/// push a value in heap and sort it
void push(T key, V const& value);
/// pop the minimal value of the heap
V pop();
void backwardLeveling(uint index);
void forwardLeveling(uint index);
/// auto check of the internal heap state
void check();
uint32 size() { return _Heap.size(); }
std::vector<THeapNode>& heapAsVector() { return _Heap; }
private:
std::vector<THeapNode> _Heap;
};
template <typename T, typename V>
CHeap<T, V>::CHeap()
{
// node 0 unused (daniel's trick)
clear();
}
template <typename T, typename V>
void CHeap<T, V>::push(T key, V const& value)
{
_Heap.push_back(THeapNode(key, value));
backwardLeveling((uint)_Heap.size()-1);
}
template <typename T, typename V>
V CHeap<T, V>::pop()
{
#ifdef NL_DEBUG
nlassert(_Heap.size() > 1);
#endif
// return best value
V ret = _Heap[1].second;
// if only 1 node in heap, pop it and leave
if (_Heap.size() == 2)
{
_Heap.pop_back();
return ret;
}
// for more than 1 object, copy last at top and pop last
_Heap[1] = _Heap.back();
_Heap.pop_back();
forwardLeveling (1);
return ret;
}
template <typename T, typename V>
void CHeap<T, V>::backwardLeveling(uint index)
{
while (index != 1 && _Heap[index].first < _Heap[index/2].first)
{
swap(_Heap[index], _Heap[index/2]);
index /= 2;
}
}
template <typename T, typename V>
void CHeap<T, V>::forwardLeveling(uint index)
{
while (true)
{
uint min_index = 2*index;
// if object has no child, leave
if (min_index > _Heap.size()-1)
break;
// choose left or right child
if (min_index+1 <= _Heap.size()-1 && _Heap[min_index].first>_Heap[min_index+1].first)
++min_index;
// if swap needed, swap and step one more, else leave
if (_Heap[index].first > _Heap[min_index].first)
{
swap(_Heap[index], _Heap[min_index]);
index = min_index;
}
else
{
break;
}
}
}
template <typename T, typename V>
void CHeap<T, V>::check()
{
for (uint index=1; index<=_Heap.size()-1; ++index)
{
if (2*index <= _Heap.size()-1)
nlassert(_Heap[index].first <= _Heap[2*index].first);
if (2*index+1 <= _Heap.size()-1)
nlassert(_Heap[index].first <= _Heap[2*index+1].first);
}
}
//////////////////////////////////////////////////////////////////////////////
/**
* The world mapping
* \author Benjamin Legros
* \author Nevrax France
* \date 2003
*/
class CWorldMap
{
friend class RYPACSCRUNCH::CPacsCruncher;
friend class CWorldPosition;
friend class CTopology::CNeighbourLink;
public:
CWorldMap();
~CWorldMap();
// serial -- beware, this method merges, use clear() before to load only one world map
void serial(NLMISC::IStream& f);
/// \name User Interface, path finding and complex moves
// @{
/// Finds an A* path
bool findAStarPath(CWorldPosition const& start, CWorldPosition const& end, std::vector<CTopology::TTopologyRef>& path, TAStarFlag denyflags = Nothing) const;
/// Finds an A* path
bool findAStarPath(CTopology::TTopologyId const& start, CTopology::TTopologyId const& end, CAStarPath& path, TAStarFlag denyflags = Nothing) const;
/// Finds an A* inside a topoly
bool findInsideAStarPath(CWorldPosition const& start, CWorldPosition const& end, std::vector<CDirection>& stepPath, TAStarFlag denyflags = Nothing) const;
/// Moves to given topology, returns false if failed
bool moveTowards(CWorldPosition& pos, CTopology::TTopologyRef const& topology) const;
/// Moves according a to a given path, returns false if failed
bool move(CWorldPosition& pos, CAStarPath& path, uint& currentstep) const;
/// Moves from a position to another
bool move(CWorldPosition& pos, CMapPosition const& end, TAStarFlag const denyFlags) const;
// @}
bool customCheckDiagMove(CWorldPosition const& pos, CDirection const& direction, RYAI_MAP_CRUNCH::TAStarFlag denyFlags) const;
// clean
void clear();
void setFlagOnPosAndRadius(CMapPosition const& pos, float radius, uint32 flag);
// to remove.
CNeighbourhood neighbours(CWorldPosition const& wpos) const;
/// Moves in neighbourhood
bool move(CWorldPosition& pos, CDirection const& direction) const;
/// Moves in neighbourhood (corner moves don't avoid collision)
bool moveSecure(CWorldPosition& pos, CDirection const& direction, uint16 maskFlags = 0xffff) const;
/// Moves in neighbourhood with diag test on both sides
bool moveDiagTestBothSide(CWorldPosition& pos, CDirection const& direction) const;
CTopology::TTopologyId getTopologyId(CWorldPosition const& wpos) const;
// LastRemoved
CTopology const& getTopologyNode(CTopology::TTopologyId const& id) const;
CTopology& getTopologyNode(CTopology::TTopologyId const& id);
CGridDirectionLayer const* getGridDirectionLayer(CWorldPosition const& pos, CTopology::TTopologyRef const& topologyRef) const;
/// Get CWorldPosition from a CMapPosition and a CSlot
CWorldPosition getWorldPosition(CMapPosition const& mapPos, CSlot const& slot) const;
/**
* Get CWorldPosition from a CMapPosition and a TLevel
* Assumes that 0 is the highest level at the given CMapPosition, and greater the level is, lower the height is.
*/
CWorldPosition getWorldPosition(CMapPosition const& mapPos, TLevel level) const;
// do not initialise a bot with the position & the world position (or u must assume that pos have no fraction).
bool setWorldPosition(AITYPES::TVerticalPos verticalPos, CWorldPosition& wpos, CAIVector const& pos, CRootCell const* originCell = NULL) const;
// Alternate setWorldPosition(), with real z instead of TVerticalPos, in millimeters
bool setWorldPosition(sint32 z, CWorldPosition& wpos, CAIVector const& pos, CRootCell const* originCell = NULL) const;
// Double version isn't tested !!! Verify it's the same than above sint32 version !
bool setWorldPosition(double z, CWorldPosition& wpos, CAIVector const& pos, CRootCell const* originCell = NULL) const;
CTopology::TTopologyRef getTopologyRef(CTopology::TTopologyId const& id) const;
void buildMasterTopo(bool allowWater, bool allowNogo);
// checks motion layers
void checkMotionLayer();
void countSuperTopo();
CRootCell const* getRootCellCst(CMapPosition const& pos) const;
CSuperCell const* getSuperCellCst(CMapPosition const& pos) const;
void getBounds(CMapPosition& min, CMapPosition& max);
CWorldPosition getSafeWorldPosition(CMapPosition const& mapPos, CSlot const& slot) const;
protected:
CWorldPosition getWorldPositionGeneration(CMapPosition const& mapPos, CSlot const& slot) const;
/// Get a world position from a vector position
template <class T>
CWorldPosition getWorldPosition(T const& pos) const
{
CSlot slot;
CMapPosition const mapPos(pos);
CRootCell const* cell = getRootCellCst(mapPos);
if (cell)
{
double bd = 1.0e10;
// find best slot
for (uint32 s=0; s<3; ++s)
{
CSlot const sslot = CSlot(s);
if (!cell->isSlotUsed(mapPos, sslot))
continue;
double const sh = cell->getHeight(CWorldPosition(cell,mapPos,sslot))*2.0 + 1.0;
if (fabs(sh) < bd)
{
bd = fabs(sh);
slot=sslot;
}
}
}
return CWorldPosition(cell,mapPos,slot);
}
// only for generation.
CSuperCell* getSuperCell(CMapPosition const& pos);
CComputeCell* getComputeCell(CMapPosition const& pos);
CRootCell* getRootCell(CMapPosition const& pos);
bool exist(CMapPosition const& pos) const;
uint32 nbUsedSlots(CMapPosition const& pos) const;
sint32 maxUsedSlot(CMapPosition const& pos) const;
bool isSlotUsed(CMapPosition const& pos, CSlot slot) const;
// used in build process.
uint getTopology(CWorldPosition const& wpos) const;
void countCells(uint& compute, uint& white, uint& simple, uint& multi, uint& other) const;
// mutators
void setRootCell(CMapPosition const& pos, CRootCell* cell);
// clear height map
void clearHeightMap();
//
// compute cell selectors
//
TCellUnit& getCellUnit(CMapPosition const& pos);
CUnitSlot& getUnitSlot(CWorldPosition const& wpos);
CComputeCell const* getComputeCellCst(CMapPosition const& pos) const;
void resetUnitSlotNLink(CWorldPosition const& wpos) { getUnitSlot(wpos).cellLink().setNSlot(CSlot()); }
void resetUnitSlotSLink(CWorldPosition const& wpos) { getUnitSlot(wpos).cellLink().setSSlot(CSlot()); }
void resetUnitSlotWLink(CWorldPosition const& wpos) { getUnitSlot(wpos).cellLink().setWSlot(CSlot()); }
void resetUnitSlotELink(CWorldPosition const& wpos) { getUnitSlot(wpos).cellLink().setESlot(CSlot()); }
void resetUnitSlot(CWorldPosition const& wpos);
private:
CSuperCell* _GridFastAccess[256*256];
public:
/// \name Path finding related error handling
// @{
enum TFindAStarPathReason
{
FASPR_NO_REASON = -1,
FASPR_NO_ERROR,
FASPR_INVALID_START_POS,
FASPR_INVALID_END_POS,
FASPR_INVALID_START_TOPO,
FASPR_INVALID_END_TOPO,
FASPR_INCOMPATIBLE_POSITIONS,
FASPR_NOT_FOUND
};
mutable TFindAStarPathReason _LastFASPReason;
static std::string toString(TFindAStarPathReason reason);
enum TFindInsideAStarPathReason
{
FIASPR_NO_REASON = -1,
FIASPR_NO_ERROR,
FIASPR_INVALID_START_POS,
FIASPR_INVALID_END_POS,
FIASPR_DIFFERENT_TOPO,
FIASPR_NOT_FOUND
};
mutable TFindInsideAStarPathReason _LastFIASPReason;
static std::string toString(TFindInsideAStarPathReason reason);
// @}
};
inline
CWorldPosition::CWorldPosition(const CRootCell *cell, const CMapPosition &pos, const CSlot &slot) : CMapPosition(pos), CSlot(slot), _RootCell(cell)
{
_cellLinkage=_RootCell->getCellLink(*this);
}
inline
CWorldPosition::CWorldPosition(const CRootCell *cell, const CMapPosition &pos, const CSlot &slot,bool generationOnly) : CMapPosition(pos), CSlot(slot), _RootCell(cell)
{
}
inline
CWorldPosition CWorldPosition::getPosS() const
{
CWorldPosition wp(*this);
wp.stepS();
return wp;
}
inline
CWorldPosition CWorldPosition::getPosN() const
{
CWorldPosition wp(*this);
wp.stepN();
return wp;
}
inline
CWorldPosition CWorldPosition::getPosE() const
{
CWorldPosition wp(*this);
wp.stepE();
return wp;
}
inline
CWorldPosition CWorldPosition::getPosW() const
{
CWorldPosition wp(*this);
wp.stepW();
return wp;
}
inline
void CWorldPosition::setPosS(CWorldPosition& pos) const
{
pos = *this;
pos.stepS();
}
inline
void CWorldPosition::setPosN(CWorldPosition& pos) const
{
pos = *this;
pos.stepN();
}
inline
void CWorldPosition::setPosE(CWorldPosition& pos) const
{
pos = *this;
pos.stepE();
}
inline
void CWorldPosition::setPosW(CWorldPosition& pos) const
{
pos = *this;
pos.stepW();
}
inline
void CWorldPosition::stepS()
{
#ifdef NL_DEBUG
nlassert(_RootCell);
#endif
setSlot(_cellLinkage.SSlot());
#ifdef NL_DEBUG
nlassert(CSlot::isValid());
#endif
if (CMapPosition::stepS()) // check if we have to recalculate the RootCell ..
{
_RootCell = getRootCell()->getWorldMapPtr().getRootCellCst(*this); // obtain the new _RootCell pointer
}
_cellLinkage = _RootCell->getCellLink(*this);
}
inline
void CWorldPosition::stepN()
{
#ifdef NL_DEBUG
nlassert(_RootCell);
#endif
setSlot(_cellLinkage.NSlot());
#ifdef NL_DEBUG
nlassert(CSlot::isValid());
#endif
if (CMapPosition::stepN()) // check if we have to recalculate the RootCell ..
{
_RootCell = getRootCell()->getWorldMapPtr().getRootCellCst(*this); // obtain the new _RootCell pointer
}
_cellLinkage = _RootCell->getCellLink(*this);
}
inline
void CWorldPosition::stepE()
{
#ifdef NL_DEBUG
nlassert(_RootCell);
#endif
setSlot(_cellLinkage.ESlot());
#ifdef NL_DEBUG
nlassert(CSlot::isValid());
#endif
if (CMapPosition::stepE()) // check if we have to recalculate the RootCell ..
{
_RootCell = getRootCell()->getWorldMapPtr().getRootCellCst(*this); // obtain the new _RootCell pointer
}
_cellLinkage = _RootCell->getCellLink(*this);
}
inline
void CWorldPosition::stepW()
{
#ifdef NL_DEBUG
nlassert(_RootCell);
#endif
setSlot(_cellLinkage.WSlot());
#ifdef NL_DEBUG
nlassert(CSlot::isValid());
#endif
if (CMapPosition::stepW()) // check if we have to recalculate the RootCell ..
{
_RootCell = getRootCell()->getWorldMapPtr().getRootCellCst(*this); // obtain the new _RootCell pointer
}
_cellLinkage = _RootCell->getCellLink(*this);
}
inline
bool CWorldPosition::moveS()
{
if (getCellLinkage().isSSlotValid())
{
stepS();
return true;
}
return false;
}
inline
bool CWorldPosition::moveN()
{
if (getCellLinkage().isNSlotValid())
{
stepN();
return true;
}
return false;
}
inline
bool CWorldPosition::moveE()
{
if (getCellLinkage().isESlotValid())
{
stepE();
return true;
}
return false;
}
inline
bool CWorldPosition::moveW()
{
if (getCellLinkage().isWSlotValid())
{
stepW();
return true;
}
return false;
}
inline
NLMISC::CVectorD CWorldPosition::getPosition() const
{
NLMISC::CVectorD ret = toVectorD();
CRootCell const* cell = getRootCell();
if (cell)
ret.z = cell->getHeight(*this)*2.0 + 1.0;
return ret;
}
inline
sint32 CWorldPosition::getMetricHeight() const
{
if (_RootCell)
return _RootCell->getMetricHeight(*this);
return 0;
}
inline
CTopology const& CTopology::TTopologyRef::getCstTopologyNode() const
{
#ifdef NL_DEBUG
nlassert(_RootCell);
#endif
return _RootCell->getCstTopologyNode(getTopologyIndex());
}
inline
CTopology::TTopologyRef::TTopologyRef(CWorldPosition const& pos, CRootCell const* rootCell)
: TTopologyId(pos, rootCell->getTopology(pos))
, _RootCell(rootCell)
{
#ifdef NL_DEBUG
nlassert(rootCell);
#endif
// TESTTOREMOVE TODO
#if !FINAL_VERSION
nlassert(&_RootCell->getCstTopologyNode(getTopologyIndex())!=NULL);
#endif
}
inline
CTopology::TTopologyRef::TTopologyRef(CWorldPosition const& pos)
: TTopologyId(pos, pos.getRootCell()->getTopology(pos))
, _RootCell(pos.getRootCell())
{
// TESTTOREMOVE TODO
#if !FINAL_VERSION
nlassert(&_RootCell->getCstTopologyNode(getTopologyIndex())!=NULL);
#endif
}
inline
void CTopology::CNeighbourLink::updateTopologyRef(CWorldMap* worldMapPtr)
{
_Ref.setRootCell(worldMapPtr->getRootCell(_Ref.getMapPosition()));
// TESTTOREMOVE TODO
#if !FINAL_VERSION
nlassert(&_Ref.getCstTopologyNode()!=NULL);
#endif
}
inline
CWorldMap::CWorldMap()
{
for (uint i=0; i<65536; ++i)
_GridFastAccess[i]=NULL;
}
inline
CWorldMap::~CWorldMap()
{
for (uint i=0; i<65536; ++i)
if (_GridFastAccess[i])
delete _GridFastAccess[i];
}
inline
CTopology::TTopologyId CWorldMap::getTopologyId(CWorldPosition const& wpos) const
{
CRootCell const* cell = getRootCellCst(wpos);
return !cell ? CTopology::TTopologyId() : CTopology::TTopologyId(wpos, cell->getTopology(wpos));
}
inline
CTopology const& CWorldMap::getTopologyNode(CTopology::TTopologyId const& id) const
{
CMapPosition pos = id.getMapPosition();
uint topo = id.getTopologyIndex();
CRootCell const* cell = getRootCellCst(pos);
#ifdef NL_DEBUG
nlassert(cell);
#endif
return cell->getCstTopologyNode(topo);
}
inline
CTopology& CWorldMap::getTopologyNode(CTopology::TTopologyId const& id)
{
CMapPosition pos = id.getMapPosition();
uint topo = id.getTopologyIndex();
CRootCell* cell = getRootCell(pos);
#ifdef NL_DEBUG
nlassert(cell);
#endif
return cell->getTopologyNode(topo);
}
inline
CGridDirectionLayer const* CWorldMap::getGridDirectionLayer(CWorldPosition const& pos, CTopology::TTopologyRef const& topologyRef) const
{
if (!pos.isValid())
return NULL;
CMapPosition tpos = topologyRef.getMapPosition();
sint dx = pos.xCoord().getFullCellId()-tpos.xCoord().getFullCellId();
sint dy = pos.yCoord().getFullCellId()-tpos.yCoord().getFullCellId();
if (abs(dx) > 1 || abs(dy) > 1)
return NULL;
CTopology const& node = topologyRef.getCstTopologyNode();
if (!node.DirectionMap)
return NULL;
CDirectionLayer* directionLayer = node.DirectionMap->Layers[pos.slot()];
if (!directionLayer)
return NULL;
return directionLayer->getGridLayer(dy+1,dx+1);
}
inline
CWorldPosition CWorldMap::getWorldPosition(CMapPosition const& mapPos, CSlot const& slot) const
{
return CWorldPosition(getRootCellCst(mapPos), mapPos, slot);
}
inline
CWorldPosition CWorldMap::getWorldPosition(CMapPosition const& mapPos, TLevel level) const
{
CRootCell const* cell = getRootCellCst(mapPos);
std::vector<sint32> slots;
slots.reserve(4);
// go through all slots and get their height
for (uint s=0; s<3; ++s)
{
CSlot slot(s);
if (!cell->isSlotUsed(mapPos, slot))
continue;
CWorldPosition wPos = CWorldPosition(cell, mapPos, slot);
slots.push_back((cell->getHeight(wPos) << 2) + s);
}
// sort them, from the lowest to the heightest
std::sort(slots.begin(), slots.end());
// get heightest slot
level = (RYAI_MAP_CRUNCH::TLevel)(slots.size()-1) - level;
// if slot exists, return it or invalid position
return (level < 0 && level >= (sint)slots.size()) ? CWorldPosition() : CWorldPosition(cell, mapPos, CSlot(slots[level]&3));
}
inline
bool CWorldMap::setWorldPosition(AITYPES::TVerticalPos verticalPos, CWorldPosition& wpos, CAIVector const& pos, CRootCell const* originCell) const
{
CSlot slot;
CMapPosition const mapPos(pos);
CRootCell const* cell = originCell ? originCell : getRootCellCst(mapPos);
if (!cell)
{
wpos = CWorldPosition(cell, mapPos, slot, true);
// addon (not agree but no choice).
return false;
}
std::map<double, CSlot> orderedSlots;
// find best slot
for (uint32 s=0; s<3; ++s)
{
if (!cell->isSlotUsed(mapPos, CSlot(s)))
continue;
CSlot const sslot = CSlot(s);
double const sh = cell->getHeight(CWorldPosition(cell,mapPos,sslot));
orderedSlots.insert(std::make_pair(sh, sslot));
}
if (!orderedSlots.empty())
{
if (verticalPos == AITYPES::vp_auto)
{
double h = orderedSlots.rbegin()->first;
slot = orderedSlots.rbegin()->second;
}
else if (verticalPos == AITYPES::vp_upper)
{
double h = orderedSlots.rbegin()->first;
slot = orderedSlots.rbegin()->second;
}
else if (verticalPos == AITYPES::vp_lower)
{
double h = orderedSlots.begin()->first;
slot = orderedSlots.begin()->second;
}
else if (verticalPos == AITYPES::vp_middle)
{
if (orderedSlots.size() > 1)
{
orderedSlots.erase(orderedSlots.rbegin()->first);
double h = orderedSlots.rbegin()->first;
slot = orderedSlots.rbegin()->second;
}
else
{
double h = orderedSlots.begin()->first;
slot = orderedSlots.begin()->second;
}
}
else
{
nlwarning("invalid vertical pos type !");
}
}
if (!slot.isValid())
{
wpos = CWorldPosition(cell,mapPos,slot,true);
return false;
}
wpos = CWorldPosition(cell,mapPos,slot);
return true;
}
inline
CTopology::TTopologyRef CWorldMap::getTopologyRef(CTopology::TTopologyId const& id) const
{
return CTopology::TTopologyRef(id, const_cast<CRootCell*>(getRootCellCst(id.getMapPosition())));
}
inline
CRootCell const* CWorldMap::getRootCellCst(CMapPosition const& pos) const
{
CSuperCell const* scell = getSuperCellCst(pos);
return !scell ? NULL : scell->getRootCellCst(pos);
}
inline
CSuperCell const* CWorldMap::getSuperCellCst(CMapPosition const& pos) const
{
return _GridFastAccess[pos.superCellFastIndex()];
}
inline
CWorldPosition CWorldMap::getWorldPositionGeneration(CMapPosition const& mapPos, CSlot const& slot) const
{
return CWorldPosition(getRootCellCst(mapPos),mapPos,slot,true); // without assuring cellLink is valid .. :(
}
inline
CWorldPosition CWorldMap::getSafeWorldPosition(CMapPosition const& mapPos, CSlot const& slot) const
{
CRootCell const* cell = getRootCellCst(mapPos);
return (cell && cell->isSlotUsed(mapPos, slot)) ? CWorldPosition(getRootCellCst(mapPos),mapPos,slot) : CWorldPosition(); // without assuring cellLink is valid .. :(
}
inline
CSuperCell* CWorldMap::getSuperCell(CMapPosition const& pos)
{
CSuperCell* superCellPtr = _GridFastAccess[pos.superCellFastIndex()];
if (!superCellPtr)
_GridFastAccess[pos.superCellFastIndex()] = superCellPtr=new CSuperCell(*this);
#ifdef NL_DEBUG
nlassert(superCellPtr);
#endif
return superCellPtr;
}
inline
CComputeCell* CWorldMap::getComputeCell(CMapPosition const& pos)
{
return getSuperCell(pos)->getComputeCell(pos);
}
inline
CRootCell* CWorldMap::getRootCell(CMapPosition const& pos)
{
CSuperCell* scell = getSuperCell(pos);
return !scell ? NULL : scell->getRootCell(pos);
}
inline
bool CWorldMap::exist(CMapPosition const& pos) const
{
return getRootCellCst(pos)!=NULL;
}
inline
uint32 CWorldMap::nbUsedSlots(CMapPosition const& pos) const
{
CRootCell const* cell = getRootCellCst(pos);
return !cell ? 0:cell->nbUsedSlots(pos);
}
inline
sint32 CWorldMap::maxUsedSlot(CMapPosition const& pos) const
{
CRootCell const* cell = getRootCellCst(pos);
return !cell ? -1 : cell->maxUsedSlot(pos);
}
inline
bool CWorldMap::isSlotUsed(CMapPosition const& pos, CSlot slot) const
{
CRootCell const* cell = getRootCellCst(pos);
return !cell ? false : cell->isSlotUsed(pos, slot);
}
inline
uint CWorldMap::getTopology(CWorldPosition const& wpos) const
{
CRootCell const* cell = wpos.getRootCell(); //getRootCellCst(wpos);
return !cell ? 0 : cell->getTopology(wpos);
}
inline
void CWorldMap::setRootCell(CMapPosition const& pos, CRootCell* cell)
{
getSuperCell(pos)->setRootCell(pos, cell);
}
inline
TCellUnit& CWorldMap::getCellUnit(CMapPosition const& pos)
{
return getComputeCell(pos)->getCellUnit(pos);
}
inline
CUnitSlot& CWorldMap::getUnitSlot(CWorldPosition const& wpos)
{
return getComputeCell(wpos)->getUnitSlot(wpos);
}
inline
CComputeCell const* CWorldMap::getComputeCellCst(CMapPosition const& pos) const
{
CSuperCell const* scell = getSuperCellCst(pos);
return !scell ? NULL : scell->getComputeCell(pos);
}
inline
void CWorldMap::resetUnitSlot(CWorldPosition const& wpos)
{
CUnitSlot& us = getUnitSlot(wpos);
if (us.getCellLink().isNSlotValid()) resetUnitSlotSLink(wpos.getPosN());
if (us.getCellLink().isSSlotValid()) resetUnitSlotNLink(wpos.getPosS());
if (us.getCellLink().isWSlotValid()) resetUnitSlotELink(wpos.getPosW());
if (us.getCellLink().isESlotValid()) resetUnitSlotWLink(wpos.getPosE());
us.reset();
}
inline
std::string CWorldMap::toString(TFindAStarPathReason reason)
{
switch (reason)
{
case FASPR_NO_ERROR:
return "FASPR_NO_ERROR";
case FASPR_INVALID_START_POS:
return "FASPR_INVALID_START_POS";
case FASPR_INVALID_END_POS:
return "FASPR_INVALID_END_POS";
case FASPR_INVALID_START_TOPO:
return "FASPR_INVALID_START_TOPO";
case FASPR_INVALID_END_TOPO:
return "FASPR_INVALID_END_TOPO";
case FASPR_INCOMPATIBLE_POSITIONS:
return "FASPR_INCOMPATIBLE_POSITIONS";
case FASPR_NOT_FOUND:
return "FIASPR_NOT_FOUND";
default:
return "UnknownReason(" + NLMISC::toString((int)reason) + ")";
}
}
inline
std::string CWorldMap::toString(TFindInsideAStarPathReason reason)
{
switch (reason)
{
case FIASPR_NO_ERROR:
return "FIASPR_NO_ERROR";
case FIASPR_INVALID_START_POS:
return "FIASPR_INVALID_START_POS";
case FIASPR_INVALID_END_POS:
return "FIASPR_INVALID_END_POS";
case FIASPR_DIFFERENT_TOPO:
return "FIASPR_DIFFERENT_TOPO";
case FIASPR_NOT_FOUND:
return "FIASPR_NOT_FOUND";
default:
return "UnknownReason(" + NLMISC::toString((int)reason) + ")";
}
}
}
//////////////////////////////////////////////////////////////////////////////
class CTimeEstimator
{
public:
CTimeEstimator(uint total);
void step(char const* str);
private:
NLMISC::TTime _StartTime;
NLMISC::TTime _LastTime;
uint _TotalCounter;
uint _CurrentCounter;
uint _LastCounter;
double _AverageSpeed;
std::string secToString(sint sec);
};
inline
CTimeEstimator::CTimeEstimator(uint total)
: _TotalCounter(total)
, _CurrentCounter(0)
, _LastCounter(0)
, _AverageSpeed(-1.0)
{
_StartTime = NLMISC::CTime::getLocalTime();
_LastTime = _StartTime;
}
inline
void CTimeEstimator::step(char const* str)
{
++_CurrentCounter;
NLMISC::TTime currentTime = NLMISC::CTime::getLocalTime();
if (currentTime-_LastTime > 2000)
{
NLMISC::TTime dt = currentTime-_LastTime;
double speed = 1000.0*(_CurrentCounter-_LastCounter)/dt;
_AverageSpeed = (_AverageSpeed < 0.0 ? speed : _AverageSpeed*0.98 + speed*0.02);
uint remaining = _TotalCounter-_CurrentCounter;
NLMISC::TTime ellapsedTime = currentTime-_StartTime;
NLMISC::TTime remainingTime = (NLMISC::TTime)(remaining*1000/_AverageSpeed);
double percent = 100.0*_CurrentCounter/_TotalCounter;
uint maxpercent = (percent > 100.0 ? 100 : (uint)percent);
uint linesize = maxpercent/5;
nlinfo("%s: %.1f%% [ellapsed:%s, togo:%s, total:%s]", str, percent, secToString((uint)(ellapsedTime/1000)).c_str(), secToString((uint)(remainingTime/1000)).c_str(), secToString((uint)((remainingTime+ellapsedTime)/1000)).c_str());
_LastCounter = _CurrentCounter;
_LastTime = currentTime;
}
}
inline
std::string CTimeEstimator::secToString(sint sec)
{
return NLMISC::toString(sec/60)+"m"+NLMISC::toString(sec%60)+"s";
}
#endif