mirror of
https://port.numenaute.org/aleajactaest/khanat-opennel-code.git
synced 2024-12-27 19:30:54 +00:00
203 lines
5.8 KiB
PHP
203 lines
5.8 KiB
PHP
|
<?php
|
||
|
/*=======================================================================
|
||
|
// File: JPGRAPH_REGSTAT.PHP
|
||
|
// Description: Regression and statistical analysis helper classes
|
||
|
// Created: 2002-12-01
|
||
|
// Author: Johan Persson (johanp@aditus.nu)
|
||
|
// Ver: $Id: jpgraph_regstat.php,v 1.1 2006/07/07 13:37:14 powles Exp $
|
||
|
//
|
||
|
// Copyright (c) Aditus Consulting. All rights reserved.
|
||
|
//========================================================================
|
||
|
*/
|
||
|
|
||
|
//------------------------------------------------------------------------
|
||
|
// CLASS Spline
|
||
|
// Create a new data array from an existing data array but with more points.
|
||
|
// The new points are interpolated using a cubic spline algorithm
|
||
|
//------------------------------------------------------------------------
|
||
|
class Spline {
|
||
|
// 3:rd degree polynom approximation
|
||
|
|
||
|
var $xdata,$ydata; // Data vectors
|
||
|
var $y2; // 2:nd derivate of ydata
|
||
|
var $n=0;
|
||
|
|
||
|
function Spline($xdata,$ydata) {
|
||
|
$this->y2 = array();
|
||
|
$this->xdata = $xdata;
|
||
|
$this->ydata = $ydata;
|
||
|
|
||
|
$n = count($ydata);
|
||
|
$this->n = $n;
|
||
|
if( $this->n !== count($xdata) ) {
|
||
|
JpGraphError::RaiseL(19001);
|
||
|
//('Spline: Number of X and Y coordinates must be the same');
|
||
|
}
|
||
|
|
||
|
// Natural spline 2:derivate == 0 at endpoints
|
||
|
$this->y2[0] = 0.0;
|
||
|
$this->y2[$n-1] = 0.0;
|
||
|
$delta[0] = 0.0;
|
||
|
|
||
|
// Calculate 2:nd derivate
|
||
|
for($i=1; $i < $n-1; ++$i) {
|
||
|
$d = ($xdata[$i+1]-$xdata[$i-1]);
|
||
|
if( $d == 0 ) {
|
||
|
JpGraphError::RaiseL(19002);
|
||
|
//('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
||
|
}
|
||
|
$s = ($xdata[$i]-$xdata[$i-1])/$d;
|
||
|
$p = $s*$this->y2[$i-1]+2.0;
|
||
|
$this->y2[$i] = ($s-1.0)/$p;
|
||
|
$delta[$i] = ($ydata[$i+1]-$ydata[$i])/($xdata[$i+1]-$xdata[$i]) -
|
||
|
($ydata[$i]-$ydata[$i-1])/($xdata[$i]-$xdata[$i-1]);
|
||
|
$delta[$i] = (6.0*$delta[$i]/($xdata[$i+1]-$xdata[$i-1])-$s*$delta[$i-1])/$p;
|
||
|
}
|
||
|
|
||
|
// Backward substitution
|
||
|
for( $j=$n-2; $j >= 0; --$j ) {
|
||
|
$this->y2[$j] = $this->y2[$j]*$this->y2[$j+1] + $delta[$j];
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Return the two new data vectors
|
||
|
function Get($num=50) {
|
||
|
$n = $this->n ;
|
||
|
$step = ($this->xdata[$n-1]-$this->xdata[0]) / ($num-1);
|
||
|
$xnew=array();
|
||
|
$ynew=array();
|
||
|
$xnew[0] = $this->xdata[0];
|
||
|
$ynew[0] = $this->ydata[0];
|
||
|
for( $j=1; $j < $num; ++$j ) {
|
||
|
$xnew[$j] = $xnew[0]+$j*$step;
|
||
|
$ynew[$j] = $this->Interpolate($xnew[$j]);
|
||
|
}
|
||
|
return array($xnew,$ynew);
|
||
|
}
|
||
|
|
||
|
// Return a single interpolated Y-value from an x value
|
||
|
function Interpolate($xpoint) {
|
||
|
|
||
|
$max = $this->n-1;
|
||
|
$min = 0;
|
||
|
|
||
|
// Binary search to find interval
|
||
|
while( $max-$min > 1 ) {
|
||
|
$k = ($max+$min) / 2;
|
||
|
if( $this->xdata[$k] > $xpoint )
|
||
|
$max=$k;
|
||
|
else
|
||
|
$min=$k;
|
||
|
}
|
||
|
|
||
|
// Each interval is interpolated by a 3:degree polynom function
|
||
|
$h = $this->xdata[$max]-$this->xdata[$min];
|
||
|
|
||
|
if( $h == 0 ) {
|
||
|
JpGraphError::RaiseL(19002);
|
||
|
//('Invalid input data for spline. Two or more consecutive input X-values are equal. Each input X-value must differ since from a mathematical point of view it must be a one-to-one mapping, i.e. each X-value must correspond to exactly one Y-value.');
|
||
|
}
|
||
|
|
||
|
|
||
|
$a = ($this->xdata[$max]-$xpoint)/$h;
|
||
|
$b = ($xpoint-$this->xdata[$min])/$h;
|
||
|
return $a*$this->ydata[$min]+$b*$this->ydata[$max]+
|
||
|
(($a*$a*$a-$a)*$this->y2[$min]+($b*$b*$b-$b)*$this->y2[$max])*($h*$h)/6.0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//------------------------------------------------------------------------
|
||
|
// CLASS Bezier
|
||
|
// Create a new data array from a number of control points
|
||
|
//------------------------------------------------------------------------
|
||
|
class Bezier {
|
||
|
/**
|
||
|
* @author Thomas Despoix, openXtrem company
|
||
|
* @license released under QPL
|
||
|
* @abstract Bezier interoplated point generation,
|
||
|
* computed from control points data sets, based on Paul Bourke algorithm :
|
||
|
* http://astronomy.swin.edu.au/~pbourke/curves/bezier/
|
||
|
*/
|
||
|
var $datax = array();
|
||
|
var $datay = array();
|
||
|
var $n=0;
|
||
|
|
||
|
function Bezier($datax, $datay, $attraction_factor = 1) {
|
||
|
// Adding control point multiple time will raise their attraction power over the curve
|
||
|
$this->n = count($datax);
|
||
|
if( $this->n !== count($datay) ) {
|
||
|
JpGraphError::RaiseL(19003);
|
||
|
//('Bezier: Number of X and Y coordinates must be the same');
|
||
|
}
|
||
|
$idx=0;
|
||
|
foreach($datax as $datumx) {
|
||
|
for ($i = 0; $i < $attraction_factor; $i++) {
|
||
|
$this->datax[$idx++] = $datumx;
|
||
|
}
|
||
|
}
|
||
|
$idx=0;
|
||
|
foreach($datay as $datumy) {
|
||
|
for ($i = 0; $i < $attraction_factor; $i++) {
|
||
|
$this->datay[$idx++] = $datumy;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
function Get($steps) {
|
||
|
$datax = array();
|
||
|
$datay = array();
|
||
|
for ($i = 0; $i < $steps; $i++) {
|
||
|
list($datumx, $datumy) = $this->GetPoint((double) $i / (double) $steps);
|
||
|
$datax[] = $datumx;
|
||
|
$datay[] = $datumy;
|
||
|
}
|
||
|
|
||
|
$datax[] = end($this->datax);
|
||
|
$datay[] = end($this->datay);
|
||
|
|
||
|
return array($datax, $datay);
|
||
|
}
|
||
|
|
||
|
function GetPoint($mu) {
|
||
|
$n = $this->n - 1;
|
||
|
$k = 0;
|
||
|
$kn = 0;
|
||
|
$nn = 0;
|
||
|
$nkn = 0;
|
||
|
$blend = 0.0;
|
||
|
$newx = 0.0;
|
||
|
$newy = 0.0;
|
||
|
|
||
|
$muk = 1.0;
|
||
|
$munk = (double) pow(1-$mu,(double) $n);
|
||
|
|
||
|
for ($k = 0; $k <= $n; $k++) {
|
||
|
$nn = $n;
|
||
|
$kn = $k;
|
||
|
$nkn = $n - $k;
|
||
|
$blend = $muk * $munk;
|
||
|
$muk *= $mu;
|
||
|
$munk /= (1-$mu);
|
||
|
while ($nn >= 1) {
|
||
|
$blend *= $nn;
|
||
|
$nn--;
|
||
|
if ($kn > 1) {
|
||
|
$blend /= (double) $kn;
|
||
|
$kn--;
|
||
|
}
|
||
|
if ($nkn > 1) {
|
||
|
$blend /= (double) $nkn;
|
||
|
$nkn--;
|
||
|
}
|
||
|
}
|
||
|
$newx += $this->datax[$k] * $blend;
|
||
|
$newy += $this->datay[$k] * $blend;
|
||
|
}
|
||
|
|
||
|
return array($newx, $newy);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// EOF
|
||
|
?>
|