mirror of
https://port.numenaute.org/aleajactaest/khanat-opennel-code.git
synced 2024-11-09 00:39:04 +00:00
913 lines
26 KiB
PHP
913 lines
26 KiB
PHP
|
<?php
|
||
|
/*=======================================================================
|
||
|
// File: JPGRAPH_PIE3D.PHP
|
||
|
// Description: 3D Pie plot extension for JpGraph
|
||
|
// Created: 2001-03-24
|
||
|
// Author: Johan Persson (johanp@aditus.nu)
|
||
|
// Ver: $Id: jpgraph_pie3d.php,v 1.1 2006/07/07 13:37:14 powles Exp $
|
||
|
//
|
||
|
// Copyright (c) Aditus Consulting. All rights reserved.
|
||
|
//========================================================================
|
||
|
*/
|
||
|
|
||
|
//===================================================
|
||
|
// CLASS PiePlot3D
|
||
|
// Description: Plots a 3D pie with a specified projection
|
||
|
// angle between 20 and 70 degrees.
|
||
|
//===================================================
|
||
|
class PiePlot3D extends PiePlot {
|
||
|
var $labelhintcolor="red",$showlabelhint=true;
|
||
|
var $angle=50;
|
||
|
var $edgecolor="", $edgeweight=1;
|
||
|
var $iThickness=false;
|
||
|
|
||
|
//---------------
|
||
|
// CONSTRUCTOR
|
||
|
function PiePlot3d(&$data) {
|
||
|
$this->radius = 0.5;
|
||
|
$this->data = $data;
|
||
|
$this->title = new Text("");
|
||
|
$this->title->SetFont(FF_FONT1,FS_BOLD);
|
||
|
$this->value = new DisplayValue();
|
||
|
$this->value->Show();
|
||
|
$this->value->SetFormat('%.0f%%');
|
||
|
}
|
||
|
|
||
|
//---------------
|
||
|
// PUBLIC METHODS
|
||
|
|
||
|
// Set label arrays
|
||
|
function SetLegends($aLegend) {
|
||
|
$this->legends = array_reverse(array_slice($aLegend,0,count($this->data)));
|
||
|
}
|
||
|
|
||
|
function SetSliceColors($aColors) {
|
||
|
$this->setslicecolors = $aColors;
|
||
|
}
|
||
|
|
||
|
function Legend(&$aGraph) {
|
||
|
parent::Legend($aGraph);
|
||
|
$aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
|
||
|
}
|
||
|
|
||
|
function SetCSIMTargets($targets,$alts=null) {
|
||
|
$this->csimtargets = $targets;
|
||
|
$this->csimalts = $alts;
|
||
|
}
|
||
|
|
||
|
// Should the slices be separated by a line? If color is specified as "" no line
|
||
|
// will be used to separate pie slices.
|
||
|
function SetEdge($aColor='black',$aWeight=1) {
|
||
|
$this->edgecolor = $aColor;
|
||
|
$this->edgeweight = $aWeight;
|
||
|
}
|
||
|
|
||
|
// Dummy function to make Pie3D behave in a similair way to 2D
|
||
|
function ShowBorder($exterior=true,$interior=true) {
|
||
|
JpGraphError::RaiseL(14001);
|
||
|
//('Pie3D::ShowBorder() . Deprecated function. Use Pie3D::SetEdge() to control the edges around slices.');
|
||
|
}
|
||
|
|
||
|
// Specify projection angle for 3D in degrees
|
||
|
// Must be between 20 and 70 degrees
|
||
|
function SetAngle($a) {
|
||
|
if( $a<5 || $a>90 )
|
||
|
JpGraphError::RaiseL(14002);
|
||
|
//("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
|
||
|
else
|
||
|
$this->angle = $a;
|
||
|
}
|
||
|
|
||
|
function AddSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle
|
||
|
|
||
|
$sa *= M_PI/180;
|
||
|
$ea *= M_PI/180;
|
||
|
|
||
|
//add coordinates of the centre to the map
|
||
|
$coords = "$xc, $yc";
|
||
|
|
||
|
//add coordinates of the first point on the arc to the map
|
||
|
$xp = floor($width*cos($sa)/2+$xc);
|
||
|
$yp = floor($yc-$height*sin($sa)/2);
|
||
|
$coords.= ", $xp, $yp";
|
||
|
|
||
|
//If on the front half, add the thickness offset
|
||
|
if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
|
||
|
$yp = floor($yp+$thick);
|
||
|
$coords.= ", $xp, $yp";
|
||
|
}
|
||
|
|
||
|
//add coordinates every 0.2 radians
|
||
|
$a=$sa+0.2;
|
||
|
while ($a<$ea) {
|
||
|
$xp = floor($width*cos($a)/2+$xc);
|
||
|
if ($a >= M_PI && $a <= 2*M_PI*1.01) {
|
||
|
$yp = floor($yc-($height*sin($a)/2)+$thick);
|
||
|
} else {
|
||
|
$yp = floor($yc-$height*sin($a)/2);
|
||
|
}
|
||
|
$coords.= ", $xp, $yp";
|
||
|
$a += 0.2;
|
||
|
}
|
||
|
|
||
|
//Add the last point on the arc
|
||
|
$xp = floor($width*cos($ea)/2+$xc);
|
||
|
$yp = floor($yc-$height*sin($ea)/2);
|
||
|
|
||
|
|
||
|
if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
|
||
|
$coords.= ", $xp, ".floor($yp+$thick);
|
||
|
}
|
||
|
$coords.= ", $xp, $yp";
|
||
|
$alt='';
|
||
|
if( !empty($this->csimalts[$i]) ) {
|
||
|
$tmp=sprintf($this->csimalts[$i],$this->data[$i]);
|
||
|
$alt="alt=\"$tmp\" title=\"$tmp\"";
|
||
|
}
|
||
|
if( !empty($this->csimtargets[$i]) )
|
||
|
$this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\" $alt />\n";
|
||
|
}
|
||
|
|
||
|
function SetLabels($aLabels,$aLblPosAdj="auto") {
|
||
|
$this->labels = $aLabels;
|
||
|
$this->ilabelposadj=$aLblPosAdj;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Distance from the pie to the labels
|
||
|
function SetLabelMargin($m) {
|
||
|
$this->value->SetMargin($m);
|
||
|
}
|
||
|
|
||
|
// Show a thin line from the pie to the label for a specific slice
|
||
|
function ShowLabelHint($f=true) {
|
||
|
$this->showlabelhint=$f;
|
||
|
}
|
||
|
|
||
|
// Set color of hint line to label for each slice
|
||
|
function SetLabelHintColor($c) {
|
||
|
$this->labelhintcolor=$c;
|
||
|
}
|
||
|
|
||
|
function SetHeight($aHeight) {
|
||
|
$this->iThickness = $aHeight;
|
||
|
}
|
||
|
|
||
|
|
||
|
// Normalize Angle between 0-360
|
||
|
function NormAngle($a) {
|
||
|
// Normalize anle to 0 to 2M_PI
|
||
|
//
|
||
|
if( $a > 0 ) {
|
||
|
while($a > 360) $a -= 360;
|
||
|
}
|
||
|
else {
|
||
|
while($a < 0) $a += 360;
|
||
|
}
|
||
|
if( $a < 0 )
|
||
|
$a = 360 + $a;
|
||
|
|
||
|
if( $a == 360 ) $a=0;
|
||
|
return $a;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
// Draw one 3D pie slice at position ($xc,$yc) with height $z
|
||
|
function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
|
||
|
|
||
|
// Due to the way the 3D Pie algorithm works we are
|
||
|
// guaranteed that any slice we get into this method
|
||
|
// belongs to either the left or right side of the
|
||
|
// pie ellipse. Hence, no slice will cross 90 or 270
|
||
|
// point.
|
||
|
if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
|
||
|
JpGraphError::RaiseL(14003);//('Internal assertion failed. Pie3D::Pie3DSlice');
|
||
|
exit(1);
|
||
|
}
|
||
|
|
||
|
$p[] = array();
|
||
|
|
||
|
// Setup pre-calculated values
|
||
|
$rsa = $sa/180*M_PI; // to Rad
|
||
|
$rea = $ea/180*M_PI; // to Rad
|
||
|
$sinsa = sin($rsa);
|
||
|
$cossa = cos($rsa);
|
||
|
$sinea = sin($rea);
|
||
|
$cosea = cos($rea);
|
||
|
|
||
|
// p[] is the points for the overall slice and
|
||
|
// pt[] is the points for the top pie
|
||
|
|
||
|
// Angular step when approximating the arc with a polygon train.
|
||
|
$step = 0.05;
|
||
|
|
||
|
if( $sa >= 270 ) {
|
||
|
if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
|
||
|
if( $ea > 0 && $ea <= 90 ) {
|
||
|
// Adjust angle to simplify conditions in loops
|
||
|
$rea += 2*M_PI;
|
||
|
}
|
||
|
|
||
|
$p = array($xc,$yc,$xc,$yc+$z,
|
||
|
$xc+$w*$cossa,$z+$yc-$h*$sinsa);
|
||
|
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
|
||
|
|
||
|
for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
|
||
|
$tca = cos($a);
|
||
|
$tsa = sin($a);
|
||
|
$p[] = $xc+$w*$tca;
|
||
|
$p[] = $z+$yc-$h*$tsa;
|
||
|
$pt[] = $xc+$w*$tca;
|
||
|
$pt[] = $yc-$h*$tsa;
|
||
|
}
|
||
|
|
||
|
$pt[] = $xc+$w;
|
||
|
$pt[] = $yc;
|
||
|
|
||
|
$p[] = $xc+$w;
|
||
|
$p[] = $z+$yc;
|
||
|
$p[] = $xc+$w;
|
||
|
$p[] = $yc;
|
||
|
$p[] = $xc;
|
||
|
$p[] = $yc;
|
||
|
|
||
|
for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
|
||
|
$pt[] = $xc + $w*cos($a);
|
||
|
$pt[] = $yc - $h*sin($a);
|
||
|
}
|
||
|
|
||
|
$pt[] = $xc+$w*$cosea;
|
||
|
$pt[] = $yc-$h*$sinea;
|
||
|
$pt[] = $xc;
|
||
|
$pt[] = $yc;
|
||
|
|
||
|
}
|
||
|
else {
|
||
|
$p = array($xc,$yc,$xc,$yc+$z,
|
||
|
$xc+$w*$cossa,$z+$yc-$h*$sinsa);
|
||
|
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
|
||
|
|
||
|
$rea = $rea == 0.0 ? 2*M_PI : $rea;
|
||
|
for( $a=$rsa; $a < $rea; $a += $step ) {
|
||
|
$tca = cos($a);
|
||
|
$tsa = sin($a);
|
||
|
$p[] = $xc+$w*$tca;
|
||
|
$p[] = $z+$yc-$h*$tsa;
|
||
|
$pt[] = $xc+$w*$tca;
|
||
|
$pt[] = $yc-$h*$tsa;
|
||
|
}
|
||
|
|
||
|
$pt[] = $xc+$w*$cosea;
|
||
|
$pt[] = $yc-$h*$sinea;
|
||
|
$pt[] = $xc;
|
||
|
$pt[] = $yc;
|
||
|
|
||
|
$p[] = $xc+$w*$cosea;
|
||
|
$p[] = $z+$yc-$h*$sinea;
|
||
|
$p[] = $xc+$w*$cosea;
|
||
|
$p[] = $yc-$h*$sinea;
|
||
|
$p[] = $xc;
|
||
|
$p[] = $yc;
|
||
|
}
|
||
|
}
|
||
|
elseif( $sa >= 180 ) {
|
||
|
$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
|
||
|
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
|
||
|
|
||
|
for( $a=$rea; $a>$rsa; $a -= $step ) {
|
||
|
$tca = cos($a);
|
||
|
$tsa = sin($a);
|
||
|
$p[] = $xc+$w*$tca;
|
||
|
$p[] = $z+$yc-$h*$tsa;
|
||
|
$pt[] = $xc+$w*$tca;
|
||
|
$pt[] = $yc-$h*$tsa;
|
||
|
}
|
||
|
|
||
|
$pt[] = $xc+$w*$cossa;
|
||
|
$pt[] = $yc-$h*$sinsa;
|
||
|
$pt[] = $xc;
|
||
|
$pt[] = $yc;
|
||
|
|
||
|
$p[] = $xc+$w*$cossa;
|
||
|
$p[] = $z+$yc-$h*$sinsa;
|
||
|
$p[] = $xc+$w*$cossa;
|
||
|
$p[] = $yc-$h*$sinsa;
|
||
|
$p[] = $xc;
|
||
|
$p[] = $yc;
|
||
|
|
||
|
}
|
||
|
elseif( $sa >= 90 ) {
|
||
|
if( $ea > 180 ) {
|
||
|
$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
|
||
|
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
|
||
|
|
||
|
for( $a=$rea; $a > M_PI; $a -= $step ) {
|
||
|
$tca = cos($a);
|
||
|
$tsa = sin($a);
|
||
|
$p[] = $xc+$w*$tca;
|
||
|
$p[] = $z + $yc - $h*$tsa;
|
||
|
$pt[] = $xc+$w*$tca;
|
||
|
$pt[] = $yc-$h*$tsa;
|
||
|
}
|
||
|
|
||
|
$p[] = $xc-$w;
|
||
|
$p[] = $z+$yc;
|
||
|
$p[] = $xc-$w;
|
||
|
$p[] = $yc;
|
||
|
$p[] = $xc;
|
||
|
$p[] = $yc;
|
||
|
|
||
|
$pt[] = $xc-$w;
|
||
|
$pt[] = $z+$yc;
|
||
|
$pt[] = $xc-$w;
|
||
|
$pt[] = $yc;
|
||
|
|
||
|
for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
|
||
|
$pt[] = $xc + $w*cos($a);
|
||
|
$pt[] = $yc - $h*sin($a);
|
||
|
}
|
||
|
|
||
|
$pt[] = $xc+$w*$cossa;
|
||
|
$pt[] = $yc-$h*$sinsa;
|
||
|
$pt[] = $xc;
|
||
|
$pt[] = $yc;
|
||
|
|
||
|
}
|
||
|
else { // $sa >= 90 && $ea <= 180
|
||
|
$p = array($xc,$yc,$xc,$yc+$z,
|
||
|
$xc+$w*$cosea,$z+$yc-$h*$sinea,
|
||
|
$xc+$w*$cosea,$yc-$h*$sinea,
|
||
|
$xc,$yc);
|
||
|
|
||
|
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
|
||
|
|
||
|
for( $a=$rea; $a>$rsa; $a -= $step ) {
|
||
|
$pt[] = $xc + $w*cos($a);
|
||
|
$pt[] = $yc - $h*sin($a);
|
||
|
}
|
||
|
|
||
|
$pt[] = $xc+$w*$cossa;
|
||
|
$pt[] = $yc-$h*$sinsa;
|
||
|
$pt[] = $xc;
|
||
|
$pt[] = $yc;
|
||
|
|
||
|
}
|
||
|
}
|
||
|
else { // sa > 0 && ea < 90
|
||
|
|
||
|
$p = array($xc,$yc,$xc,$yc+$z,
|
||
|
$xc+$w*$cossa,$z+$yc-$h*$sinsa,
|
||
|
$xc+$w*$cossa,$yc-$h*$sinsa,
|
||
|
$xc,$yc);
|
||
|
|
||
|
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
|
||
|
|
||
|
for( $a=$rsa; $a < $rea; $a += $step ) {
|
||
|
$pt[] = $xc + $w*cos($a);
|
||
|
$pt[] = $yc - $h*sin($a);
|
||
|
}
|
||
|
|
||
|
$pt[] = $xc+$w*$cosea;
|
||
|
$pt[] = $yc-$h*$sinea;
|
||
|
$pt[] = $xc;
|
||
|
$pt[] = $yc;
|
||
|
}
|
||
|
|
||
|
$img->PushColor($fillcolor.":".$shadow);
|
||
|
$img->FilledPolygon($p);
|
||
|
$img->PopColor();
|
||
|
|
||
|
$img->PushColor($fillcolor);
|
||
|
$img->FilledPolygon($pt);
|
||
|
$img->PopColor();
|
||
|
}
|
||
|
|
||
|
function SetStartAngle($aStart) {
|
||
|
if( $aStart < 0 || $aStart > 360 ) {
|
||
|
JpGraphError::RaiseL(14004);//('Slice start angle must be between 0 and 360 degrees.');
|
||
|
}
|
||
|
$this->startangle = $aStart;
|
||
|
}
|
||
|
|
||
|
// Draw a 3D Pie
|
||
|
function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
|
||
|
$shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
|
||
|
|
||
|
//---------------------------------------------------------------------------
|
||
|
// As usual the algorithm get more complicated than I originally
|
||
|
// envisioned. I believe that this is as simple as it is possible
|
||
|
// to do it with the features I want. It's a good exercise to start
|
||
|
// thinking on how to do this to convince your self that all this
|
||
|
// is really needed for the general case.
|
||
|
//
|
||
|
// The algorithm two draw 3D pies without "real 3D" is done in
|
||
|
// two steps.
|
||
|
// First imagine the pie cut in half through a thought line between
|
||
|
// 12'a clock and 6'a clock. It now easy to imagine that we can plot
|
||
|
// the individual slices for each half by starting with the topmost
|
||
|
// pie slice and continue down to 6'a clock.
|
||
|
//
|
||
|
// In the algortithm this is done in three principal steps
|
||
|
// Step 1. Do the knife cut to ensure by splitting slices that extends
|
||
|
// over the cut line. This is done by splitting the original slices into
|
||
|
// upto 3 subslices.
|
||
|
// Step 2. Find the top slice for each half
|
||
|
// Step 3. Draw the slices from top to bottom
|
||
|
//
|
||
|
// The thing that slightly complicates this scheme with all the
|
||
|
// angle comparisons below is that we can have an arbitrary start
|
||
|
// angle so we must take into account the different equivalence classes.
|
||
|
// For the same reason we must walk through the angle array in a
|
||
|
// modulo fashion.
|
||
|
//
|
||
|
// Limitations of algorithm:
|
||
|
// * A small exploded slice which crosses the 270 degree point
|
||
|
// will get slightly nagged close to the center due to the fact that
|
||
|
// we print the slices in Z-order and that the slice left part
|
||
|
// get printed first and might get slightly nagged by a larger
|
||
|
// slice on the right side just before the right part of the small
|
||
|
// slice. Not a major problem though.
|
||
|
//---------------------------------------------------------------------------
|
||
|
|
||
|
|
||
|
// Determine the height of the ellippse which gives an
|
||
|
// indication of the inclination angle
|
||
|
$h = ($angle/90.0)*$d;
|
||
|
$sum = 0;
|
||
|
for($i=0; $i<count($data); ++$i ) {
|
||
|
$sum += $data[$i];
|
||
|
}
|
||
|
|
||
|
// Special optimization
|
||
|
if( $sum==0 ) return;
|
||
|
|
||
|
if( $this->labeltype == 2 ) {
|
||
|
$this->adjusted_data = $this->AdjPercentage($data);
|
||
|
}
|
||
|
|
||
|
// Setup the start
|
||
|
$accsum = 0;
|
||
|
$a = $startangle;
|
||
|
$a = $this->NormAngle($a);
|
||
|
|
||
|
//
|
||
|
// Step 1 . Split all slices that crosses 90 or 270
|
||
|
//
|
||
|
$idx=0;
|
||
|
$adjexplode=array();
|
||
|
$numcolors = count($colors);
|
||
|
for($i=0; $i<count($data); ++$i, ++$idx ) {
|
||
|
$da = $data[$i]/$sum * 360;
|
||
|
|
||
|
if( empty($this->explode_radius[$i]) )
|
||
|
$this->explode_radius[$i]=0;
|
||
|
|
||
|
$expscale=1;
|
||
|
if( $aaoption == 1 )
|
||
|
$expscale=2;
|
||
|
|
||
|
$la = $a + $da/2;
|
||
|
$explode = array( $xc + $this->explode_radius[$i]*cos($la*M_PI/180)*$expscale,
|
||
|
$yc - $this->explode_radius[$i]*sin($la*M_PI/180) * ($h/$d) *$expscale );
|
||
|
$adjexplode[$idx] = $explode;
|
||
|
$labeldata[$i] = array($la,$explode[0],$explode[1]);
|
||
|
$originalangles[$i] = array($a,$a+$da);
|
||
|
|
||
|
$ne = $this->NormAngle($a+$da);
|
||
|
if( $da <= 180 ) {
|
||
|
// If the slice size is <= 90 it can at maximum cut across
|
||
|
// one boundary (either 90 or 270) where it needs to be split
|
||
|
$split=-1; // no split
|
||
|
if( ($da<=90 && ($a <= 90 && $ne > 90)) ||
|
||
|
(($da <= 180 && $da >90) && (($a < 90 || $a >= 270) && $ne > 90)) ) {
|
||
|
$split = 90;
|
||
|
}
|
||
|
elseif( ($da<=90 && ($a <= 270 && $ne > 270)) ||
|
||
|
(($da<=180 && $da>90) && ($a >= 90 && $a < 270 && ($a+$da) > 270 )) ) {
|
||
|
$split = 270;
|
||
|
}
|
||
|
if( $split > 0 ) { // split in two
|
||
|
$angles[$idx] = array($a,$split);
|
||
|
$adjcolors[$idx] = $colors[$i % $numcolors];
|
||
|
$adjexplode[$idx] = $explode;
|
||
|
$angles[++$idx] = array($split,$ne);
|
||
|
$adjcolors[$idx] = $colors[$i % $numcolors];
|
||
|
$adjexplode[$idx] = $explode;
|
||
|
}
|
||
|
else { // no split
|
||
|
$angles[$idx] = array($a,$ne);
|
||
|
$adjcolors[$idx] = $colors[$i % $numcolors];
|
||
|
$adjexplode[$idx] = $explode;
|
||
|
}
|
||
|
}
|
||
|
else {
|
||
|
// da>180
|
||
|
// Slice may, depending on position, cross one or two
|
||
|
// bonudaries
|
||
|
|
||
|
if( $a < 90 )
|
||
|
$split = 90;
|
||
|
elseif( $a <= 270 )
|
||
|
$split = 270;
|
||
|
else
|
||
|
$split = 90;
|
||
|
|
||
|
$angles[$idx] = array($a,$split);
|
||
|
$adjcolors[$idx] = $colors[$i % $numcolors];
|
||
|
$adjexplode[$idx] = $explode;
|
||
|
//if( $a+$da > 360-$split ) {
|
||
|
// For slices larger than 270 degrees we might cross
|
||
|
// another boundary as well. This means that we must
|
||
|
// split the slice further. The comparison gets a little
|
||
|
// bit complicated since we must take into accound that
|
||
|
// a pie might have a startangle >0 and hence a slice might
|
||
|
// wrap around the 0 angle.
|
||
|
// Three cases:
|
||
|
// a) Slice starts before 90 and hence gets a split=90, but
|
||
|
// we must also check if we need to split at 270
|
||
|
// b) Slice starts after 90 but before 270 and slices
|
||
|
// crosses 90 (after a wrap around of 0)
|
||
|
// c) If start is > 270 (hence the firstr split is at 90)
|
||
|
// and the slice is so large that it goes all the way
|
||
|
// around 270.
|
||
|
if( ($a < 90 && ($a+$da > 270)) ||
|
||
|
($a > 90 && $a<=270 && ($a+$da>360+90) ) ||
|
||
|
($a > 270 && $this->NormAngle($a+$da)>270) ) {
|
||
|
$angles[++$idx] = array($split,360-$split);
|
||
|
$adjcolors[$idx] = $colors[$i % $numcolors];
|
||
|
$adjexplode[$idx] = $explode;
|
||
|
$angles[++$idx] = array(360-$split,$ne);
|
||
|
$adjcolors[$idx] = $colors[$i % $numcolors];
|
||
|
$adjexplode[$idx] = $explode;
|
||
|
}
|
||
|
else {
|
||
|
// Just a simple split to the previous decided
|
||
|
// angle.
|
||
|
$angles[++$idx] = array($split,$ne);
|
||
|
$adjcolors[$idx] = $colors[$i % $numcolors];
|
||
|
$adjexplode[$idx] = $explode;
|
||
|
}
|
||
|
}
|
||
|
$a += $da;
|
||
|
$a = $this->NormAngle($a);
|
||
|
}
|
||
|
|
||
|
// Total number of slices
|
||
|
$n = count($angles);
|
||
|
|
||
|
for($i=0; $i<$n; ++$i) {
|
||
|
list($dbgs,$dbge) = $angles[$i];
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Step 2. Find start index (first pie that starts in upper left quadrant)
|
||
|
//
|
||
|
$minval = $angles[0][0];
|
||
|
$min = 0;
|
||
|
for( $i=0; $i<$n; ++$i ) {
|
||
|
if( $angles[$i][0] < $minval ) {
|
||
|
$minval = $angles[$i][0];
|
||
|
$min = $i;
|
||
|
}
|
||
|
}
|
||
|
$j = $min;
|
||
|
$cnt = 0;
|
||
|
while( $angles[$j][1] <= 90 ) {
|
||
|
$j++;
|
||
|
if( $j>=$n) {
|
||
|
$j=0;
|
||
|
}
|
||
|
if( $cnt > $n ) {
|
||
|
JpGraphError::RaiseL(14005);
|
||
|
//("Pie3D Internal error (#1). Trying to wrap twice when looking for start index");
|
||
|
}
|
||
|
++$cnt;
|
||
|
}
|
||
|
$start = $j;
|
||
|
|
||
|
//
|
||
|
// Step 3. Print slices in z-order
|
||
|
//
|
||
|
$cnt = 0;
|
||
|
|
||
|
// First stroke all the slices between 90 and 270 (left half circle)
|
||
|
// counterclockwise
|
||
|
|
||
|
while( $angles[$j][0] < 270 && $aaoption !== 2 ) {
|
||
|
|
||
|
list($x,$y) = $adjexplode[$j];
|
||
|
|
||
|
$this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
|
||
|
$z,$adjcolors[$j],$shadow);
|
||
|
|
||
|
$last = array($x,$y,$j);
|
||
|
|
||
|
$j++;
|
||
|
if( $j >= $n ) $j=0;
|
||
|
if( $cnt > $n ) {
|
||
|
JpGraphError::RaiseL(14006);
|
||
|
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
|
||
|
}
|
||
|
++$cnt;
|
||
|
}
|
||
|
|
||
|
$slice_left = $n-$cnt;
|
||
|
$j=$start-1;
|
||
|
if($j<0) $j=$n-1;
|
||
|
$cnt = 0;
|
||
|
|
||
|
// The stroke all slices from 90 to -90 (right half circle)
|
||
|
// clockwise
|
||
|
while( $cnt < $slice_left && $aaoption !== 2 ) {
|
||
|
|
||
|
list($x,$y) = $adjexplode[$j];
|
||
|
|
||
|
$this->Pie3DSlice($img,$x,$y,$d,$h,$angles[$j][0],$angles[$j][1],
|
||
|
$z,$adjcolors[$j],$shadow);
|
||
|
$j--;
|
||
|
if( $cnt > $n ) {
|
||
|
JpGraphError::RaiseL(14006);
|
||
|
//("Pie3D Internal Error: Z-Sorting algorithm for 3D Pies is not working properly (2). Trying to wrap twice while stroking.");
|
||
|
}
|
||
|
if($j<0) $j=$n-1;
|
||
|
$cnt++;
|
||
|
}
|
||
|
|
||
|
// Now do a special thing. Stroke the last slice on the left
|
||
|
// halfcircle one more time. This is needed in the case where
|
||
|
// the slice close to 270 have been exploded. In that case the
|
||
|
// part of the slice close to the center of the pie might be
|
||
|
// slightly nagged.
|
||
|
if( $aaoption !== 2 )
|
||
|
$this->Pie3DSlice($img,$last[0],$last[1],$d,$h,$angles[$last[2]][0],
|
||
|
$angles[$last[2]][1],$z,$adjcolors[$last[2]],$shadow);
|
||
|
|
||
|
|
||
|
if( $aaoption !== 1 ) {
|
||
|
// Now print possible labels and add csim
|
||
|
$img->SetFont($this->value->ff,$this->value->fs);
|
||
|
$margin = $img->GetFontHeight()/2 + $this->value->margin ;
|
||
|
for($i=0; $i < count($data); ++$i ) {
|
||
|
$la = $labeldata[$i][0];
|
||
|
$x = $labeldata[$i][1] + cos($la*M_PI/180)*($d+$margin);
|
||
|
$y = $labeldata[$i][2] - sin($la*M_PI/180)*($h+$margin);
|
||
|
if( $la > 180 && $la < 360 ) $y += $z;
|
||
|
if( $this->labeltype == 0 ) {
|
||
|
if( $sum > 0 )
|
||
|
$l = 100*$data[$i]/$sum;
|
||
|
else
|
||
|
$l = 0;
|
||
|
}
|
||
|
elseif( $this->labeltype == 1 ) {
|
||
|
$l = $data[$i];
|
||
|
}
|
||
|
else {
|
||
|
$l = $this->adjusted_data[$i];
|
||
|
}
|
||
|
if( isset($this->labels[$i]) && is_string($this->labels[$i]) )
|
||
|
$l=sprintf($this->labels[$i],$l);
|
||
|
|
||
|
$this->StrokeLabels($l,$img,$labeldata[$i][0]*M_PI/180,$x,$y,$z);
|
||
|
|
||
|
$this->AddSliceToCSIM($i,$labeldata[$i][1],$labeldata[$i][2],$h*2,$d*2,$z,
|
||
|
$originalangles[$i][0],$originalangles[$i][1]);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//
|
||
|
// Finally add potential lines in pie
|
||
|
//
|
||
|
|
||
|
if( $edgecolor=="" || $aaoption !== 0 ) return;
|
||
|
|
||
|
$accsum = 0;
|
||
|
$a = $startangle;
|
||
|
$a = $this->NormAngle($a);
|
||
|
|
||
|
$a *= M_PI/180.0;
|
||
|
|
||
|
$idx=0;
|
||
|
$img->PushColor($edgecolor);
|
||
|
$img->SetLineWeight($edgeweight);
|
||
|
|
||
|
$fulledge = true;
|
||
|
for($i=0; $i < count($data) && $fulledge; ++$i ) {
|
||
|
if( empty($this->explode_radius[$i]) )
|
||
|
$this->explode_radius[$i]=0;
|
||
|
if( $this->explode_radius[$i] > 0 ) {
|
||
|
$fulledge = false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
for($i=0; $i < count($data); ++$i, ++$idx ) {
|
||
|
|
||
|
$da = $data[$i]/$sum * 2*M_PI;
|
||
|
$this->StrokeFullSliceFrame($img,$xc,$yc,$a,$a+$da,$d,$h,$z,$edgecolor,
|
||
|
$this->explode_radius[$i],$fulledge);
|
||
|
$a += $da;
|
||
|
}
|
||
|
$img->PopColor();
|
||
|
}
|
||
|
|
||
|
function StrokeFullSliceFrame($img,$xc,$yc,$sa,$ea,$w,$h,$z,$edgecolor,$exploderadius,$fulledge) {
|
||
|
$step = 0.02;
|
||
|
|
||
|
if( $exploderadius > 0 ) {
|
||
|
$la = ($sa+$ea)/2;
|
||
|
$xc += $exploderadius*cos($la);
|
||
|
$yc -= $exploderadius*sin($la) * ($h/$w) ;
|
||
|
|
||
|
}
|
||
|
|
||
|
$p = array($xc,$yc,$xc+$w*cos($sa),$yc-$h*sin($sa));
|
||
|
|
||
|
for($a=$sa; $a < $ea; $a += $step ) {
|
||
|
$p[] = $xc + $w*cos($a);
|
||
|
$p[] = $yc - $h*sin($a);
|
||
|
}
|
||
|
|
||
|
$p[] = $xc+$w*cos($ea);
|
||
|
$p[] = $yc-$h*sin($ea);
|
||
|
$p[] = $xc;
|
||
|
$p[] = $yc;
|
||
|
|
||
|
$img->SetColor($edgecolor);
|
||
|
$img->Polygon($p);
|
||
|
|
||
|
// Unfortunately we can't really draw the full edge around the whole of
|
||
|
// of the slice if any of the slices are exploded. The reason is that
|
||
|
// this algorithm is to simply. There are cases where the edges will
|
||
|
// "overwrite" other slices when they have been exploded.
|
||
|
// Doing the full, proper 3D hidden lines stiff is actually quite
|
||
|
// tricky. So for exploded pies we only draw the top edge. Not perfect
|
||
|
// but the "real" solution is much more complicated.
|
||
|
if( $fulledge && !( $sa > 0 && $sa < M_PI && $ea < M_PI) ) {
|
||
|
|
||
|
if($sa < M_PI && $ea > M_PI)
|
||
|
$sa = M_PI;
|
||
|
|
||
|
if($sa < 2*M_PI && (($ea >= 2*M_PI) || ($ea > 0 && $ea < $sa ) ) )
|
||
|
$ea = 2*M_PI;
|
||
|
|
||
|
if( $sa >= M_PI && $ea <= 2*M_PI ) {
|
||
|
$p = array($xc + $w*cos($sa),$yc - $h*sin($sa),
|
||
|
$xc + $w*cos($sa),$z + $yc - $h*sin($sa));
|
||
|
|
||
|
for($a=$sa+$step; $a < $ea; $a += $step ) {
|
||
|
$p[] = $xc + $w*cos($a);
|
||
|
$p[] = $z + $yc - $h*sin($a);
|
||
|
}
|
||
|
$p[] = $xc + $w*cos($ea);
|
||
|
$p[] = $z + $yc - $h*sin($ea);
|
||
|
$p[] = $xc + $w*cos($ea);
|
||
|
$p[] = $yc - $h*sin($ea);
|
||
|
$img->SetColor($edgecolor);
|
||
|
$img->Polygon($p);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
function Stroke($img,$aaoption=0) {
|
||
|
$n = count($this->data);
|
||
|
|
||
|
// If user hasn't set the colors use the theme array
|
||
|
if( $this->setslicecolors==null ) {
|
||
|
$colors = array_keys($img->rgb->rgb_table);
|
||
|
sort($colors);
|
||
|
$idx_a=$this->themearr[$this->theme];
|
||
|
$ca = array();
|
||
|
$m = count($idx_a);
|
||
|
for($i=0; $i < $m; ++$i)
|
||
|
$ca[$i] = $colors[$idx_a[$i]];
|
||
|
$ca = array_reverse(array_slice($ca,0,$n));
|
||
|
}
|
||
|
else {
|
||
|
$ca = $this->setslicecolors;
|
||
|
}
|
||
|
|
||
|
|
||
|
if( $this->posx <= 1 && $this->posx > 0 )
|
||
|
$xc = round($this->posx*$img->width);
|
||
|
else
|
||
|
$xc = $this->posx ;
|
||
|
|
||
|
if( $this->posy <= 1 && $this->posy > 0 )
|
||
|
$yc = round($this->posy*$img->height);
|
||
|
else
|
||
|
$yc = $this->posy ;
|
||
|
|
||
|
if( $this->radius <= 1 ) {
|
||
|
$width = floor($this->radius*min($img->width,$img->height));
|
||
|
// Make sure that the pie doesn't overflow the image border
|
||
|
// The 0.9 factor is simply an extra margin to leave some space
|
||
|
// between the pie an the border of the image.
|
||
|
$width = min($width,min($xc*0.9,($yc*90/$this->angle-$width/4)*0.9));
|
||
|
}
|
||
|
else {
|
||
|
$width = $this->radius * ($aaoption === 1 ? 2 : 1 ) ;
|
||
|
}
|
||
|
|
||
|
// Add a sanity check for width
|
||
|
if( $width < 1 ) {
|
||
|
JpGraphError::RaiseL(14007);//("Width for 3D Pie is 0. Specify a size > 0");
|
||
|
}
|
||
|
|
||
|
// Establish a thickness. By default the thickness is a fifth of the
|
||
|
// pie slice width (=pie radius) but since the perspective depends
|
||
|
// on the inclination angle we use some heuristics to make the edge
|
||
|
// slightly thicker the less the angle.
|
||
|
|
||
|
// Has user specified an absolute thickness? In that case use
|
||
|
// that instead
|
||
|
|
||
|
if( $this->iThickness ) {
|
||
|
$thick = $this->iThickness;
|
||
|
$thick *= ($aaoption === 1 ? 2 : 1 );
|
||
|
}
|
||
|
else
|
||
|
$thick = $width/12;
|
||
|
$a = $this->angle;
|
||
|
if( $a <= 30 ) $thick *= 1.6;
|
||
|
elseif( $a <= 40 ) $thick *= 1.4;
|
||
|
elseif( $a <= 50 ) $thick *= 1.2;
|
||
|
elseif( $a <= 60 ) $thick *= 1.0;
|
||
|
elseif( $a <= 70 ) $thick *= 0.8;
|
||
|
elseif( $a <= 80 ) $thick *= 0.7;
|
||
|
else $thick *= 0.6;
|
||
|
|
||
|
$thick = floor($thick);
|
||
|
|
||
|
if( $this->explode_all )
|
||
|
for($i=0; $i < $n; ++$i)
|
||
|
$this->explode_radius[$i]=$this->explode_r;
|
||
|
|
||
|
$this->Pie3D($aaoption,$img,$this->data, $ca, $xc, $yc, $width, $this->angle,
|
||
|
$thick, 0.65, $this->startangle, $this->edgecolor, $this->edgeweight);
|
||
|
|
||
|
// Adjust title position
|
||
|
if( $aaoption != 1 ) {
|
||
|
$this->title->Pos($xc,$yc-$this->title->GetFontHeight($img)-$width/2-$this->title->margin, "center","bottom");
|
||
|
$this->title->Stroke($img);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
//---------------
|
||
|
// PRIVATE METHODS
|
||
|
|
||
|
// Position the labels of each slice
|
||
|
function StrokeLabels($label,$img,$a,$xp,$yp,$z) {
|
||
|
$this->value->halign="left";
|
||
|
$this->value->valign="top";
|
||
|
|
||
|
// Position the axis title.
|
||
|
// dx, dy is the offset from the top left corner of the bounding box that sorrounds the text
|
||
|
// that intersects with the extension of the corresponding axis. The code looks a little
|
||
|
// bit messy but this is really the only way of having a reasonable position of the
|
||
|
// axis titles.
|
||
|
$img->SetFont($this->value->ff,$this->value->fs,$this->value->fsize);
|
||
|
$h=$img->GetTextHeight($label);
|
||
|
// For numeric values the format of the display value
|
||
|
// must be taken into account
|
||
|
if( is_numeric($label) ) {
|
||
|
if( $label >= 0 )
|
||
|
$w=$img->GetTextWidth(sprintf($this->value->format,$label));
|
||
|
else
|
||
|
$w=$img->GetTextWidth(sprintf($this->value->negformat,$label));
|
||
|
}
|
||
|
else
|
||
|
$w=$img->GetTextWidth($label);
|
||
|
while( $a > 2*M_PI ) $a -= 2*M_PI;
|
||
|
if( $a>=7*M_PI/4 || $a <= M_PI/4 ) $dx=0;
|
||
|
if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dx=($a-M_PI/4)*2/M_PI;
|
||
|
if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dx=1;
|
||
|
if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dx=(1-($a-M_PI*5/4)*2/M_PI);
|
||
|
|
||
|
if( $a>=7*M_PI/4 ) $dy=(($a-M_PI)-3*M_PI/4)*2/M_PI;
|
||
|
if( $a<=M_PI/4 ) $dy=(1-$a*2/M_PI);
|
||
|
if( $a>=M_PI/4 && $a <= 3*M_PI/4 ) $dy=1;
|
||
|
if( $a>=3*M_PI/4 && $a <= 5*M_PI/4 ) $dy=(1-($a-3*M_PI/4)*2/M_PI);
|
||
|
if( $a>=5*M_PI/4 && $a <= 7*M_PI/4 ) $dy=0;
|
||
|
|
||
|
$x = round($xp-$dx*$w);
|
||
|
$y = round($yp-$dy*$h);
|
||
|
|
||
|
|
||
|
// Mark anchor point for debugging
|
||
|
/*
|
||
|
$img->SetColor('red');
|
||
|
$img->Line($xp-10,$yp,$xp+10,$yp);
|
||
|
$img->Line($xp,$yp-10,$xp,$yp+10);
|
||
|
*/
|
||
|
$oldmargin = $this->value->margin;
|
||
|
$this->value->margin=0;
|
||
|
$this->value->Stroke($img,$label,$x,$y);
|
||
|
$this->value->margin=$oldmargin;
|
||
|
|
||
|
}
|
||
|
} // Class
|
||
|
|
||
|
/* EOF */
|
||
|
?>
|