khanat-code-old/code/nel/src/3d/mesh_mrm.cpp
2010-05-06 02:08:41 +02:00

3610 lines
102 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "std3d.h"
#include "nel/misc/bsphere.h"
#include "nel/misc/system_info.h"
#include "nel/misc/hierarchical_timer.h"
#include "nel/misc/fast_mem.h"
#include "nel/3d/mesh_mrm.h"
#include "nel/3d/mrm_builder.h"
#include "nel/3d/mrm_parameters.h"
#include "nel/3d/mesh_mrm_instance.h"
#include "nel/3d/scene.h"
#include "nel/3d/skeleton_model.h"
#include "nel/3d/stripifier.h"
#include "nel/3d/mesh_blender.h"
#include "nel/3d/render_trav.h"
#include "nel/misc/fast_floor.h"
#include "nel/3d/raw_skin.h"
#include "nel/3d/shifted_triangle_cache.h"
#include "nel/3d/texture_file.h"
using namespace NLMISC;
using namespace std;
namespace NL3D
{
H_AUTO_DECL( NL3D_MeshMRMGeom_RenderShadow )
// ***************************************************************************
// ***************************************************************************
// CMeshMRMGeom::CLod
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
void CMeshMRMGeom::CLod::serial(NLMISC::IStream &f)
{
/*
Version 2:
- precompute of triangle order. (nothing more to load).
Version 1:
- add VertexBlocks;
Version 0:
- base vdrsion.
*/
sint ver= f.serialVersion(2);
uint i;
f.serial(NWedges);
f.serialCont(RdrPass);
f.serialCont(Geomorphs);
f.serialCont(MatrixInfluences);
// Serial array of InfluencedVertices. NB: code written so far for NL3D_MESH_SKINNING_MAX_MATRIX==4 only.
nlassert(NL3D_MESH_SKINNING_MAX_MATRIX==4);
for(i= 0; i<NL3D_MESH_SKINNING_MAX_MATRIX; i++)
{
f.serialCont(InfluencedVertices[i]);
}
if(ver>=1)
f.serialCont(SkinVertexBlocks);
else
buildSkinVertexBlocks();
// if >= version 2, reorder of triangles is precomputed, else compute it now.
if(ver<2)
optimizeTriangleOrder();
}
// ***************************************************************************
void CMeshMRMGeom::CLod::buildSkinVertexBlocks()
{
contReset(SkinVertexBlocks);
// The list of vertices. true if used by this lod.
vector<bool> vertexMap;
vertexMap.resize(NWedges, false);
// from InfluencedVertices, aknoledge what vertices are used.
uint i;
for(i=0;i<NL3D_MESH_SKINNING_MAX_MATRIX;i++)
{
uint nInf= InfluencedVertices[i].size();
if( nInf==0 )
continue;
uint32 *infPtr= &(InfluencedVertices[i][0]);
// for all InfluencedVertices only.
for(;nInf>0;nInf--, infPtr++)
{
uint index= *infPtr;
vertexMap[index]= true;
}
}
// For all vertices, test if they are used, and build the according SkinVertexBlocks;
CVertexBlock *vBlock= NULL;
for(i=0; i<vertexMap.size();i++)
{
if(vertexMap[i])
{
// preceding block?
if(vBlock)
{
// yes, extend it.
vBlock->NVertices++;
}
else
{
// no, append a new one.
SkinVertexBlocks.push_back(CVertexBlock());
vBlock= &SkinVertexBlocks[SkinVertexBlocks.size()-1];
vBlock->VertexStart= i;
vBlock->NVertices= 1;
}
}
else
{
// Finish the preceding block (if any).
vBlock= NULL;
}
}
}
// ***************************************************************************
void CMeshMRMGeom::CLod::optimizeTriangleOrder()
{
CStripifier stripifier;
// for all rdrpass
for(uint rp=0; rp<RdrPass.size(); rp++ )
{
// stripify list of triangles of this pass.
CRdrPass &pass= RdrPass[rp];
stripifier.optimizeTriangles(pass.PBlock, pass.PBlock);
}
}
// ***************************************************************************
// ***************************************************************************
// CMeshMRMGeom.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
static NLMISC::CAABBoxExt makeBBox(const std::vector<CVector> &Vertices)
{
NLMISC::CAABBox ret;
nlassert(Vertices.size());
ret.setCenter(Vertices[0]);
for(sint i=0;i<(sint)Vertices.size();i++)
{
ret.extend(Vertices[i]);
}
return ret;
}
// ***************************************************************************
CMeshMRMGeom::CMeshMRMGeom()
{
_Skinned= false;
_NbLodLoaded= 0;
_BoneIdComputed = false;
_BoneIdExtended = false;
_PreciseClipping= false;
_SupportSkinGrouping= false;
_MeshDataId= 0;
_SupportMeshBlockRendering= false;
_MBRCurrentLodId= 0;
_SupportShadowSkinGrouping= false;
}
// ***************************************************************************
CMeshMRMGeom::~CMeshMRMGeom()
{
}
// ***************************************************************************
void CMeshMRMGeom::changeMRMDistanceSetup(float distanceFinest, float distanceMiddle, float distanceCoarsest)
{
// check input.
if(distanceFinest<0) return;
if(distanceMiddle<=distanceFinest) return;
if(distanceCoarsest<=distanceMiddle) return;
// Change.
_LevelDetail.DistanceFinest= distanceFinest;
_LevelDetail.DistanceMiddle= distanceMiddle;
_LevelDetail.DistanceCoarsest= distanceCoarsest;
// compile
_LevelDetail.compileDistanceSetup();
}
// ***************************************************************************
void CMeshMRMGeom::build(CMesh::CMeshBuild &m, std::vector<CMesh::CMeshBuild*> &bsList,
uint numMaxMaterial, const CMRMParameters &params)
{
// Empty geometry?
if(m.Vertices.size()==0 || m.Faces.size()==0)
{
_VBufferFinal.setNumVertices(0);
_VBufferFinal.reserve(0);
_Lods.clear();
_BBox.setCenter(CVector::Null);
_BBox.setSize(CVector::Null);
return;
}
nlassert(numMaxMaterial>0);
// SmartPtr Copy VertexProgram effect.
//================================================
this->_MeshVertexProgram= m.MeshVertexProgram;
/// 0. First, make bbox.
//======================
// NB: this is equivalent as building BBox from MRM VBuffer, because CMRMBuilder create new vertices
// which are just interpolation of original vertices.
_BBox= makeBBox(m.Vertices);
/// 1. Launch the MRM build process.
//================================================
CMRMBuilder mrmBuilder;
CMeshBuildMRM meshBuildMRM;
mrmBuilder.compileMRM(m, bsList, params, meshBuildMRM, numMaxMaterial);
// Then just copy result!
//================================================
_VBufferFinal= meshBuildMRM.VBuffer;
_Lods= meshBuildMRM.Lods;
_Skinned= meshBuildMRM.Skinned;
_SkinWeights= meshBuildMRM.SkinWeights;
// Compute degradation control.
//================================================
_LevelDetail.DistanceFinest= meshBuildMRM.DistanceFinest;
_LevelDetail.DistanceMiddle= meshBuildMRM.DistanceMiddle;
_LevelDetail.DistanceCoarsest= meshBuildMRM.DistanceCoarsest;
nlassert(_LevelDetail.DistanceFinest>=0);
nlassert(_LevelDetail.DistanceMiddle > _LevelDetail.DistanceFinest);
nlassert(_LevelDetail.DistanceCoarsest > _LevelDetail.DistanceMiddle);
// Compute OODistDelta and DistancePow
_LevelDetail.compileDistanceSetup();
// Build the _LodInfos.
//================================================
_LodInfos.resize(_Lods.size());
uint32 precNWedges= 0;
uint i;
for(i=0;i<_Lods.size();i++)
{
_LodInfos[i].StartAddWedge= precNWedges;
_LodInfos[i].EndAddWedges= _Lods[i].NWedges;
precNWedges= _Lods[i].NWedges;
// LodOffset is filled in serial() when stream is input.
}
// After build, all lods are present in memory.
_NbLodLoaded= _Lods.size();
// For load balancing.
//================================================
// compute Max Face Used
_LevelDetail.MaxFaceUsed= 0;
_LevelDetail.MinFaceUsed= 0;
// Count of primitive block
if(_Lods.size()>0)
{
uint pb;
// Compute MinFaces.
CLod &firstLod= _Lods[0];
for (pb=0; pb<firstLod.RdrPass.size(); pb++)
{
CRdrPass &pass= firstLod.RdrPass[pb];
// Sum tri
_LevelDetail.MinFaceUsed+= pass.PBlock.getNumIndexes ()/3;
}
// Compute MaxFaces.
CLod &lastLod= _Lods[_Lods.size()-1];
for (pb=0; pb<lastLod.RdrPass.size(); pb++)
{
CRdrPass &pass= lastLod.RdrPass[pb];
// Sum tri
_LevelDetail.MaxFaceUsed+= pass.PBlock.getNumIndexes ()/3;
}
}
// For skinning.
//================================================
if( _Skinned )
{
bkupOriginalSkinVertices();
}
// Inform that the mesh data has changed
dirtMeshDataId();
// For AGP SKinning optim, and for Render optim
//================================================
for(i=0;i<_Lods.size();i++)
{
_Lods[i].buildSkinVertexBlocks();
// sort triangles for better cache use.
_Lods[i].optimizeTriangleOrder();
}
// Copy Blend Shapes
//================================================
_MeshMorpher.BlendShapes = meshBuildMRM.BlendShapes;
// Compact bone id and build a bone id names
//================================================
// Skinned ?
if (_Skinned)
{
// Remap
std::map<uint, uint> remap;
// Current bone
uint currentBone = 0;
// Reserve memory
_BonesName.reserve (m.BonesNames.size());
// For each vertices
uint vert;
for (vert=0; vert<_SkinWeights.size(); vert++)
{
// Found one ?
bool found=false;
// For each weight
uint weight;
for (weight=0; weight<NL3D_MESH_SKINNING_MAX_MATRIX; weight++)
{
// Active ?
if ((_SkinWeights[vert].Weights[weight]>0)||(weight==0))
{
// Look for it
std::map<uint, uint>::iterator ite = remap.find (_SkinWeights[vert].MatrixId[weight]);
// Find ?
if (ite == remap.end())
{
// Insert it
remap.insert (std::map<uint, uint>::value_type (_SkinWeights[vert].MatrixId[weight], currentBone));
// Check the id
nlassert (_SkinWeights[vert].MatrixId[weight]<m.BonesNames.size());
// Set the bone name
_BonesName.push_back (m.BonesNames[_SkinWeights[vert].MatrixId[weight]]);
// Set the local bone id
_SkinWeights[vert].MatrixId[weight] = currentBone++;
}
else
{
// Set the local bone id
_SkinWeights[vert].MatrixId[weight] = ite->second;
}
// Found one
found = true;
}
}
// Found one ?
nlassert (found);
}
// Remap the vertex influence by lods
uint lod;
for (lod=0; lod<_Lods.size(); lod++)
{
// For each matrix used
uint matrix;
for (matrix=0; matrix<_Lods[lod].MatrixInfluences.size(); matrix++)
{
// Remap
std::map<uint, uint>::iterator ite = remap.find (_Lods[lod].MatrixInfluences[matrix]);
// Find ?
nlassert (ite != remap.end());
// Remap
_Lods[lod].MatrixInfluences[matrix] = ite->second;
}
}
}
// Misc.
//===================
// Some runtime not serialized compilation
compileRunTime();
}
// ***************************************************************************
void CMeshMRMGeom::applyMaterialRemap(const std::vector<sint> &remap)
{
for(uint lod=0;lod<getNbLod();lod++)
{
for(uint rp=0;rp<getNbRdrPass(lod);rp++)
{
// remap
uint32 &matId= _Lods[lod].RdrPass[rp].MaterialId;
nlassert(remap[matId]>=0);
matId= remap[matId];
}
}
}
// ***************************************************************************
void CMeshMRMGeom::applyGeomorph(std::vector<CMRMWedgeGeom> &geoms, float alphaLod)
{
applyGeomorphWithVBHardPtr(geoms, alphaLod, NULL);
}
// ***************************************************************************
void CMeshMRMGeom::applyGeomorphWithVBHardPtr(std::vector<CMRMWedgeGeom> &geoms, float alphaLod, uint8 *vertexDestPtr)
{
// no geomorphs? quit.
if(geoms.size()==0)
return;
clamp(alphaLod, 0.f, 1.f);
float a= alphaLod;
float a1= 1 - alphaLod;
// info from VBuffer.
CVertexBufferReadWrite vba;
_VBufferFinal.lock (vba);
uint8 *vertexPtr= (uint8*)vba.getVertexCoordPointer();
uint flags= _VBufferFinal.getVertexFormat();
sint32 vertexSize= _VBufferFinal.getVertexSize();
// because of the unrolled code for 4 first UV, must assert this.
nlassert(CVertexBuffer::MaxStage>=4);
// must have XYZ.
nlassert(flags & CVertexBuffer::PositionFlag);
// If VBuffer Hard disabled
if(vertexDestPtr==NULL)
{
// write into vertexPtr.
vertexDestPtr= vertexPtr;
}
// if it is a common format
if( flags== (CVertexBuffer::PositionFlag | CVertexBuffer::NormalFlag | CVertexBuffer::TexCoord0Flag) &&
_VBufferFinal.getValueType(CVertexBuffer::TexCoord0) == CVertexBuffer::Float2 )
{
// use a faster method
applyGeomorphPosNormalUV0(geoms, vertexPtr, vertexDestPtr, vertexSize, a, a1);
}
else
{
// for color interp
uint i;
uint ua= (uint)(a*256);
clamp(ua, (uint)0, (uint)256);
uint ua1= 256 - ua;
// if an offset is 0, it means that the component is not in the VBuffer.
sint32 normalOff;
sint32 colorOff;
sint32 specularOff;
sint32 uvOff[CVertexBuffer::MaxStage];
bool has3Coords[CVertexBuffer::MaxStage];
// Compute offset of each component of the VB.
if(flags & CVertexBuffer::NormalFlag)
normalOff= _VBufferFinal.getNormalOff();
else
normalOff= 0;
if(flags & CVertexBuffer::PrimaryColorFlag)
colorOff= _VBufferFinal.getColorOff();
else
colorOff= 0;
if(flags & CVertexBuffer::SecondaryColorFlag)
specularOff= _VBufferFinal.getSpecularOff();
else
specularOff= 0;
for(i= 0; i<CVertexBuffer::MaxStage;i++)
{
if(flags & (CVertexBuffer::TexCoord0Flag<<i))
{
uvOff[i]= _VBufferFinal.getTexCoordOff(i);
has3Coords[i] = (_VBufferFinal.getValueType(i + CVertexBuffer::TexCoord0) == CVertexBuffer::Float3);
}
else
{
uvOff[i]= 0;
}
}
// For all geomorphs.
uint nGeoms= geoms.size();
CMRMWedgeGeom *ptrGeom= &(geoms[0]);
uint8 *destPtr= vertexDestPtr;
/* NB: optimisation: lot of "if" in this Loop, but because of BTB, they always cost nothing (prediction is good).
NB: this also is why we unroll the 4 1st Uv. The other (if any), are done in the other loop.
NB: optimisation for AGP write cominers: the order of write (vertex, normal, uvs...) is important for good
use of AGP write combiners.
We have 2 version : one that tests for 3 coordinates texture coords, and one that doesn't
*/
if (!has3Coords[0] && !has3Coords[1] && !has3Coords[2] && !has3Coords[3])
{
// there are no texture coordinate of dimension 3
for(; nGeoms>0; nGeoms--, ptrGeom++, destPtr+= vertexSize )
{
uint8 *startPtr= vertexPtr + ptrGeom->Start*vertexSize;
uint8 *endPtr= vertexPtr + ptrGeom->End*vertexSize;
// Vertex.
{
CVector *start= (CVector*)startPtr;
CVector *end= (CVector*)endPtr;
CVector *dst= (CVector*)destPtr;
*dst= *start * a + *end * a1;
}
// Normal.
if(normalOff)
{
CVector *start= (CVector*)(startPtr + normalOff);
CVector *end= (CVector*)(endPtr + normalOff);
CVector *dst= (CVector*)(destPtr + normalOff);
*dst= *start * a + *end * a1;
}
// Uvs.
// uv[0].
if(uvOff[0])
{
// Uv.
CUV *start= (CUV*)(startPtr + uvOff[0]);
CUV *end= (CUV*)(endPtr + uvOff[0]);
CUV *dst= (CUV*)(destPtr + uvOff[0]);
*dst= *start * a + *end * a1;
}
// uv[1].
if(uvOff[1])
{
// Uv.
CUV *start= (CUV*)(startPtr + uvOff[1]);
CUV *end= (CUV*)(endPtr + uvOff[1]);
CUV *dst= (CUV*)(destPtr + uvOff[1]);
*dst= *start * a + *end * a1;
}
// uv[2].
if(uvOff[2])
{
CUV *start= (CUV*)(startPtr + uvOff[2]);
CUV *end= (CUV*)(endPtr + uvOff[2]);
CUV *dst= (CUV*)(destPtr + uvOff[2]);
*dst= *start * a + *end * a1;
}
// uv[3].
if(uvOff[3])
{
// Uv.
CUV *start= (CUV*)(startPtr + uvOff[3]);
CUV *end= (CUV*)(endPtr + uvOff[3]);
CUV *dst= (CUV*)(destPtr + uvOff[3]);
*dst= *start * a + *end * a1;
}
}
}
else // THERE ARE TEXTURE COORDINATES OF DIMENSION 3
{
for(; nGeoms>0; nGeoms--, ptrGeom++, destPtr+= vertexSize )
{
uint8 *startPtr= vertexPtr + ptrGeom->Start*vertexSize;
uint8 *endPtr= vertexPtr + ptrGeom->End*vertexSize;
// Vertex.
{
CVector *start= (CVector*)startPtr;
CVector *end= (CVector*)endPtr;
CVector *dst= (CVector*)destPtr;
*dst= *start * a + *end * a1;
}
// Normal.
if(normalOff)
{
CVector *start= (CVector*)(startPtr + normalOff);
CVector *end= (CVector*)(endPtr + normalOff);
CVector *dst= (CVector*)(destPtr + normalOff);
*dst= *start * a + *end * a1;
}
// Uvs.
// uv[0].
if(uvOff[0])
{
if (!has3Coords[0])
{
// Uv.
CUV *start= (CUV*)(startPtr + uvOff[0]);
CUV *end= (CUV*)(endPtr + uvOff[0]);
CUV *dst= (CUV*)(destPtr + uvOff[0]);
*dst= *start * a + *end * a1;
}
else
{
// Uv.
CUVW *start= (CUVW*)(startPtr + uvOff[0]);
CUVW *end= (CUVW*)(endPtr + uvOff[0]);
CUVW *dst= (CUVW*)(destPtr + uvOff[0]);
*dst= *start * a + *end * a1;
}
}
// uv[1].
if(uvOff[1])
{
if (!has3Coords[1])
{
// Uv.
CUV *start= (CUV*)(startPtr + uvOff[1]);
CUV *end= (CUV*)(endPtr + uvOff[1]);
CUV *dst= (CUV*)(destPtr + uvOff[1]);
*dst= *start * a + *end * a1;
}
else
{
// Uv.
CUVW *start= (CUVW*)(startPtr + uvOff[1]);
CUVW *end= (CUVW*)(endPtr + uvOff[1]);
CUVW *dst= (CUVW*)(destPtr + uvOff[1]);
*dst= *start * a + *end * a1;
}
}
// uv[2].
if(uvOff[2])
{
if (!has3Coords[2])
{
// Uv.
CUV *start= (CUV*)(startPtr + uvOff[2]);
CUV *end= (CUV*)(endPtr + uvOff[2]);
CUV *dst= (CUV*)(destPtr + uvOff[2]);
*dst= *start * a + *end * a1;
}
else
{
// Uv.
CUVW *start= (CUVW*)(startPtr + uvOff[2]);
CUVW *end= (CUVW*)(endPtr + uvOff[2]);
CUVW *dst= (CUVW*)(destPtr + uvOff[2]);
*dst= *start * a + *end * a1;
}
}
// uv[3].
if(uvOff[3])
{
if (!has3Coords[3])
{
// Uv.
CUV *start= (CUV*)(startPtr + uvOff[3]);
CUV *end= (CUV*)(endPtr + uvOff[3]);
CUV *dst= (CUV*)(destPtr + uvOff[3]);
*dst= *start * a + *end * a1;
}
else
{
// Uv.
CUVW *start= (CUVW*)(startPtr + uvOff[3]);
CUVW *end= (CUVW*)(endPtr + uvOff[3]);
CUVW *dst= (CUVW*)(destPtr + uvOff[3]);
*dst= *start * a + *end * a1;
}
}
// color.
if(colorOff)
{
CRGBA *start= (CRGBA*)(startPtr + colorOff);
CRGBA *end= (CRGBA*)(endPtr + colorOff);
CRGBA *dst= (CRGBA*)(destPtr + colorOff);
dst->blendFromui(*start, *end, ua1);
}
// specular.
if(specularOff)
{
CRGBA *start= (CRGBA*)(startPtr + specularOff);
CRGBA *end= (CRGBA*)(endPtr + specularOff);
CRGBA *dst= (CRGBA*)(destPtr + specularOff);
dst->blendFromui(*start, *end, ua1);
}
}
}
// Process extra UVs (maybe never, so don't bother optims :)).
// For all stages after 4.
for(i=4;i<CVertexBuffer::MaxStage;i++)
{
uint nGeoms= geoms.size();
CMRMWedgeGeom *ptrGeom= &(geoms[0]);
uint8 *destPtr= vertexDestPtr;
if(uvOff[i]==0)
continue;
// For all geomorphs.
for(; nGeoms>0; nGeoms--, ptrGeom++, destPtr+= vertexSize )
{
uint8 *startPtr= vertexPtr + ptrGeom->Start*vertexSize;
uint8 *endPtr= vertexPtr + ptrGeom->End*vertexSize;
// uv[i].
// Uv.
if (!has3Coords[i])
{
CUV *start= (CUV*)(startPtr + uvOff[i]);
CUV *end= (CUV*)(endPtr + uvOff[i]);
CUV *dst= (CUV*)(destPtr + uvOff[i]);
*dst= *start * a + *end * a1;
}
else
{
CUVW *start= (CUVW*)(startPtr + uvOff[i]);
CUVW *end= (CUVW*)(endPtr + uvOff[i]);
CUVW *dst= (CUVW*)(destPtr + uvOff[i]);
*dst= *start * a + *end * a1;
}
}
}
}
}
// ***************************************************************************
void CMeshMRMGeom::applyGeomorphPosNormalUV0(std::vector<CMRMWedgeGeom> &geoms, uint8 *vertexPtr, uint8 *vertexDestPtr, sint32 vertexSize, float a, float a1)
{
nlassert(vertexSize==32);
// For all geomorphs.
uint nGeoms= geoms.size();
CMRMWedgeGeom *ptrGeom= &(geoms[0]);
uint8 *destPtr= vertexDestPtr;
for(; nGeoms>0; nGeoms--, ptrGeom++, destPtr+= vertexSize )
{
// Consider the Pos/Normal/UV as an array of 8 float to interpolate.
float *start= (float*)(vertexPtr + (ptrGeom->Start<<5));
float *end= (float*)(vertexPtr + (ptrGeom->End<<5));
float *dst= (float*)(destPtr);
// unrolled
dst[0]= start[0] * a + end[0]* a1;
dst[1]= start[1] * a + end[1]* a1;
dst[2]= start[2] * a + end[2]* a1;
dst[3]= start[3] * a + end[3]* a1;
dst[4]= start[4] * a + end[4]* a1;
dst[5]= start[5] * a + end[5]* a1;
dst[6]= start[6] * a + end[6]* a1;
dst[7]= start[7] * a + end[7]* a1;
}
}
// ***************************************************************************
void CMeshMRMGeom::initInstance(CMeshBaseInstance *mbi)
{
// init the instance with _MeshVertexProgram infos
if(_MeshVertexProgram)
_MeshVertexProgram->initInstance(mbi);
}
// ***************************************************************************
bool CMeshMRMGeom::clip(const std::vector<CPlane> &pyramid, const CMatrix &worldMatrix)
{
// Speed Clip: clip just the sphere.
CBSphere localSphere(_BBox.getCenter(), _BBox.getRadius());
CBSphere worldSphere;
// transform the sphere in WorldMatrix (with nearly good scale info).
localSphere.applyTransform(worldMatrix, worldSphere);
// if out of only plane, entirely out.
for(sint i=0;i<(sint)pyramid.size();i++)
{
// We are sure that pyramid has normalized plane normals.
// if SpherMax OUT return false.
float d= pyramid[i]*worldSphere.Center;
if(d>worldSphere.Radius)
return false;
}
// test if must do a precise clip, according to mesh size.
if( _PreciseClipping )
{
CPlane localPlane;
// if out of only plane, entirely out.
for(sint i=0;i<(sint)pyramid.size();i++)
{
// Transform the pyramid in Object space.
localPlane= pyramid[i]*worldMatrix;
// localPlane must be normalized, because worldMatrix mya have a scale.
localPlane.normalize();
// if the box is not partially inside the plane, quit
if( !_BBox.clipBack(localPlane) )
return false;
}
}
return true;
}
// ***************************************************************************
inline sint CMeshMRMGeom::chooseLod(float alphaMRM, float &alphaLod)
{
// Choose what Lod to draw.
alphaMRM*= _Lods.size()-1;
sint numLod= (sint)ceil(alphaMRM);
if(numLod==0)
{
numLod= 0;
alphaLod= 0;
}
else
{
// Lerp beetween lod i-1 and lod i.
alphaLod= alphaMRM-(numLod-1);
}
// If lod chosen is not loaded, take the best loaded.
if(numLod>=(sint)_NbLodLoaded)
{
numLod= _NbLodLoaded-1;
alphaLod= 1;
}
return numLod;
}
// ***************************************************************************
void CMeshMRMGeom::render(IDriver *drv, CTransformShape *trans, float polygonCount, uint32 rdrFlags, float globalAlpha)
{
nlassert(drv);
if(_Lods.size()==0)
return;
// get the meshMRM instance.
CMeshBaseInstance *mi= safe_cast<CMeshBaseInstance*>(trans);
// get a ptr on scene
CScene *ownerScene= mi->getOwnerScene();
// get a ptr on renderTrav
CRenderTrav *renderTrav= &ownerScene->getRenderTrav();
// get the result of the Load Balancing.
float alphaMRM= _LevelDetail.getLevelDetailFromPolyCount(polygonCount);
// choose the lod.
float alphaLod;
sint numLod= chooseLod(alphaMRM, alphaLod);
// Render the choosen Lod.
CLod &lod= _Lods[numLod];
if(lod.RdrPass.size()==0)
return;
// Update the vertexBufferHard (if possible).
// \toto yoyo: TODO_OPTIMIZE: allocate only what is needed for the current Lod (Max of all instances, like
// the loading....) (see loadHeader()).
// get the skeleton model to which I am binded (else NULL).
CSkeletonModel *skeleton;
skeleton = mi->getSkeletonModel();
// The mesh must not be skinned for render()
nlassert(!(_Skinned && mi->isSkinned() && skeleton));
bool bMorphApplied = _MeshMorpher.BlendShapes.size() > 0;
bool useTangentSpace = _MeshVertexProgram && _MeshVertexProgram->needTangentSpace();
// Profiling
//===========
H_AUTO( NL3D_MeshMRMGeom_RenderNormal );
// Morphing
// ========
if (bMorphApplied)
{
// If _Skinned (NB: the skin is not applied) and if lod.OriginalSkinRestored, then restoreOriginalSkinPart is
// not called but mush morpher write changed vertices into VBHard so its ok. The unchanged vertices
// are written in the preceding call to restoreOriginalSkinPart.
if (_Skinned)
{
_MeshMorpher.initSkinned(&_VBufferOriginal,
&_VBufferFinal,
useTangentSpace,
&_OriginalSkinVertices,
&_OriginalSkinNormals,
useTangentSpace ? &_OriginalTGSpace : NULL,
false );
_MeshMorpher.updateSkinned (mi->getBlendShapeFactors());
}
else // Not even skinned so we have to do all the stuff
{
_MeshMorpher.init(&_VBufferOriginal,
&_VBufferFinal,
useTangentSpace);
_MeshMorpher.update (mi->getBlendShapeFactors());
}
}
// Skinning.
//===========
// if mesh is skinned (but here skin not applied), we must copy vertices/normals from original vertices.
if (_Skinned)
{
// do it for this Lod only, and if cache say it is necessary.
if (!lod.OriginalSkinRestored)
restoreOriginalSkinPart(lod);
}
// set the instance worldmatrix.
drv->setupModelMatrix(trans->getWorldMatrix());
// Geomorph.
//===========
// Geomorph the choosen Lod (if not the coarser mesh).
if(numLod>0)
{
applyGeomorph(lod.Geomorphs, alphaLod);
}
// force normalisation of normals..
bool bkupNorm= drv->isForceNormalize();
drv->forceNormalize(true);
// Setup meshVertexProgram
//===========
// use MeshVertexProgram effect?
bool useMeshVP= _MeshVertexProgram != NULL;
if( useMeshVP )
{
CMatrix invertedObjectMatrix;
invertedObjectMatrix = trans->getWorldMatrix().inverted();
// really ok if success to begin VP
useMeshVP= _MeshVertexProgram->begin(drv, mi->getOwnerScene(), mi, invertedObjectMatrix, renderTrav->CamPos);
}
// Render the lod.
//===========
// active VB.
drv->activeVertexBuffer(_VBufferFinal);
// Global alpha used ?
uint32 globalAlphaUsed= rdrFlags & IMeshGeom::RenderGlobalAlpha;
uint8 globalAlphaInt=(uint8)NLMISC::OptFastFloor(globalAlpha*255);
// Render all pass.
if (globalAlphaUsed)
{
bool gaDisableZWrite= (rdrFlags & IMeshGeom::RenderGADisableZWrite)?true:false;
// for all passes
for(uint i=0;i<lod.RdrPass.size();i++)
{
CRdrPass &rdrPass= lod.RdrPass[i];
if ( ( (mi->Materials[rdrPass.MaterialId].getBlend() == false) && (rdrFlags & IMeshGeom::RenderOpaqueMaterial) ) ||
( (mi->Materials[rdrPass.MaterialId].getBlend() == true) && (rdrFlags & IMeshGeom::RenderTransparentMaterial) ) )
{
// CMaterial Ref
CMaterial &material=mi->Materials[rdrPass.MaterialId];
// Use a MeshBlender to modify material and driver.
CMeshBlender blender;
blender.prepareRenderForGlobalAlpha(material, drv, globalAlpha, globalAlphaInt, gaDisableZWrite);
// Setup VP material
if (useMeshVP)
{
_MeshVertexProgram->setupForMaterial(material, drv, ownerScene, &_VBufferFinal);
}
// Render
drv->activeIndexBuffer(rdrPass.PBlock);
drv->renderTriangles(material, 0, rdrPass.PBlock.getNumIndexes()/3);
// Resetup material/driver
blender.restoreRender(material, drv, gaDisableZWrite);
}
}
}
else
{
for(uint i=0;i<lod.RdrPass.size();i++)
{
CRdrPass &rdrPass= lod.RdrPass[i];
if ( ( (mi->Materials[rdrPass.MaterialId].getBlend() == false) && (rdrFlags & IMeshGeom::RenderOpaqueMaterial) ) ||
( (mi->Materials[rdrPass.MaterialId].getBlend() == true) && (rdrFlags & IMeshGeom::RenderTransparentMaterial) ) )
{
// CMaterial Ref
CMaterial &material=mi->Materials[rdrPass.MaterialId];
// Setup VP material
if (useMeshVP)
{
_MeshVertexProgram->setupForMaterial(material, drv, ownerScene, &_VBufferFinal);
}
// Render with the Materials of the MeshInstance.
drv->activeIndexBuffer(rdrPass.PBlock);
drv->renderTriangles(material, 0, rdrPass.PBlock.getNumIndexes()/3);
}
}
}
// End VertexProgram effect
if(useMeshVP)
{
// end it.
_MeshVertexProgram->end(drv);
}
// bkup force normalisation.
drv->forceNormalize(bkupNorm);
}
// ***************************************************************************
void CMeshMRMGeom::renderSkin(CTransformShape *trans, float alphaMRM)
{
H_AUTO( NL3D_MeshMRMGeom_renderSkin );
if(_Lods.size()==0)
return;
// get the meshMRM instance. only CMeshMRMInstance is possible when skinned (not MultiLod)
CMeshMRMInstance *mi= safe_cast<CMeshMRMInstance*>(trans);
// get a ptr on scene
CScene *ownerScene= mi->getOwnerScene();
// get a ptr on renderTrav
CRenderTrav *renderTrav= &ownerScene->getRenderTrav();
// get a ptr on the driver
IDriver *drv= renderTrav->getDriver();
nlassert(drv);
// choose the lod.
float alphaLod;
sint numLod= chooseLod(alphaMRM, alphaLod);
// Render the choosen Lod.
CLod &lod= _Lods[numLod];
if(lod.RdrPass.size()==0)
return;
/*
YOYO: renderSkin() no more support vertexBufferHard()!!! for AGP Memory optimisation concern.
AGP Skin rendering is made when supportSkinGrouping() is true
Hence if a skin is to be rendered here, because it doesn't have a good vertex format, or it has
MeshVertexProgram etc..., it will be rendered WITHOUT VBHard => slower.
*/
// get the skeleton model to which I am skinned
CSkeletonModel *skeleton;
skeleton = mi->getSkeletonModel();
// must be skinned for renderSkin()
nlassert(_Skinned && mi->isSkinned() && skeleton);
bool bMorphApplied = _MeshMorpher.BlendShapes.size() > 0;
bool useNormal= (_VBufferFinal.getVertexFormat() & CVertexBuffer::NormalFlag)!=0;
bool useTangentSpace = _MeshVertexProgram && _MeshVertexProgram->needTangentSpace();
// Profiling
//===========
H_AUTO( NL3D_MeshMRMGeom_renderSkin_go );
// Morphing
// ========
if (bMorphApplied)
{
// Since Skinned we must update original skin vertices and normals because skinning use it
_MeshMorpher.initSkinned(&_VBufferOriginal,
&_VBufferFinal,
useTangentSpace,
&_OriginalSkinVertices,
&_OriginalSkinNormals,
useTangentSpace ? &_OriginalTGSpace : NULL,
true );
_MeshMorpher.updateSkinned (mi->getBlendShapeFactors());
}
// Skinning.
//===========
// Never use RawSkin. Actually used in skinGrouping.
updateRawSkinNormal(false, mi, numLod);
// applySkin.
//--------
// If skin without normal (rare/useful?) always simple (slow) case.
if(!useNormal)
{
// skinning with just position
applySkin (lod, skeleton);
}
else
{
// apply skin for this Lod only.
if (!useTangentSpace)
{
// skinning with normal, but no tangent space
applySkinWithNormal (lod, skeleton);
}
else
{
// Tangent space stored in the last texture coordinate
applySkinWithTangentSpace(lod, skeleton, _VBufferFinal.getNumTexCoordUsed() - 1);
}
}
// endSkin.
//--------
// dirt this lod part. (NB: this is not optimal, but sufficient :) ).
lod.OriginalSkinRestored= false;
// NB: the skeleton matrix has already been setuped by CSkeletonModel
// NB: the normalize flag has already been setuped by CSkeletonModel
// Geomorph.
//===========
// Geomorph the choosen Lod (if not the coarser mesh).
if(numLod>0)
{
applyGeomorph(lod.Geomorphs, alphaLod);
}
// Setup meshVertexProgram
//===========
// use MeshVertexProgram effect?
bool useMeshVP= _MeshVertexProgram != NULL;
if( useMeshVP )
{
CMatrix invertedObjectMatrix;
invertedObjectMatrix = skeleton->getWorldMatrix().inverted();
// really ok if success to begin VP
useMeshVP= _MeshVertexProgram->begin(drv, mi->getOwnerScene(), mi, invertedObjectMatrix, renderTrav->CamPos);
}
// Render the lod.
//===========
// active VB.
drv->activeVertexBuffer(_VBufferFinal);
// Render all pass.
for(uint i=0;i<lod.RdrPass.size();i++)
{
CRdrPass &rdrPass= lod.RdrPass[i];
// CMaterial Ref
CMaterial &material=mi->Materials[rdrPass.MaterialId];
// Setup VP material
if (useMeshVP)
{
_MeshVertexProgram->setupForMaterial(material, drv, ownerScene, &_VBufferFinal);
}
// Render with the Materials of the MeshInstance.
drv->activeIndexBuffer(rdrPass.PBlock);
drv->renderTriangles(material, 0, rdrPass.PBlock.getNumIndexes()/3);
}
// End VertexProgram effect
if(useMeshVP)
{
// end it.
_MeshVertexProgram->end(drv);
}
}
// ***************************************************************************
bool CMeshMRMGeom::supportSkinGrouping() const
{
return _SupportSkinGrouping;
}
// ***************************************************************************
sint CMeshMRMGeom::renderSkinGroupGeom(CMeshMRMInstance *mi, float alphaMRM, uint remainingVertices, uint8 *vbDest)
{
H_AUTO( NL3D_MeshMRMGeom_rdrSkinGrpGeom )
// NB: not need to test if _Lods.empty(), because already done through supportSkinGrouping()
// get a ptr on scene
CScene *ownerScene= mi->getOwnerScene();
// get a ptr on renderTrav
CRenderTrav *renderTrav= &ownerScene->getRenderTrav();
// get a ptr on the driver
IDriver *drv= renderTrav->getDriver();
nlassert(drv);
// choose the lod.
float alphaLod;
sint numLod= chooseLod(alphaMRM, alphaLod);
_LastLodComputed= numLod;
// Render the choosen Lod.
CLod &lod= _Lods[numLod];
if(lod.RdrPass.size()==0)
// return no vertices added
return 0;
// If the Lod is too big to render in the VBufferHard
if(lod.NWedges>remainingVertices)
// return Failure
return -1;
// get the skeleton model to which I am skinned
CSkeletonModel *skeleton;
skeleton = mi->getSkeletonModel();
// must be skinned for renderSkin()
nlassert(_Skinned && mi->isSkinned() && skeleton);
bool bMorphApplied = _MeshMorpher.BlendShapes.size() > 0;
bool useNormal= (_VBufferFinal.getVertexFormat() & CVertexBuffer::NormalFlag)!=0;
nlassert(useNormal);
// Profiling
//===========
H_AUTO( NL3D_MeshMRMGeom_rdrSkinGrpGeom_go );
// Morphing
// ========
// Use RawSkin?. compute before morphing, cause of updateRawSkin
updateRawSkinNormal(true, mi, numLod);
nlassert(mi->_RawSkinCache);
// Apply morph
if (bMorphApplied)
{
// No need to manage lod.OriginalSkinRestored, since in case of SkinGroupGeom, the VBuffer final is not modified.
// copy directly from the original VB, and apply BlendShapes. Dest is directly the RawSkin
_MeshMorpher.updateRawSkin(&_VBufferFinal,
mi->_RawSkinCache->VertexRemap,
mi->getBlendShapeFactors());
}
// Skinning.
//===========
// NB: the skeleton matrix has already been setuped by CSkeletonModel
// NB: the normalize flag has already been setuped by CSkeletonModel
// applySkin with RawSkin.
//--------
// always RawSkin now in SkinGrouping, even with MeshMorpher
{
H_AUTO( NL3D_RawSkinning );
// RawSkin do all the job in optimized way: Skinning, copy to VBHard and Geomorph.
// skinning with normal, but no tangent space
applyRawSkinWithNormal (lod, *(mi->_RawSkinCache), skeleton, vbDest, alphaLod);
// Vertices are packed in RawSkin mode (ie no holes due to MRM!)
return mi->_RawSkinCache->Geomorphs.size() +
mi->_RawSkinCache->TotalSoftVertices +
mi->_RawSkinCache->TotalHardVertices;
}
}
// ***************************************************************************
void CMeshMRMGeom::renderSkinGroupPrimitives(CMeshMRMInstance *mi, uint baseVertex, std::vector<CSkinSpecularRdrPass> &specularRdrPasses, uint skinIndex)
{
H_AUTO( NL3D_MeshMRMGeom_rdrSkinGrpPrimitives );
// get a ptr on scene
CScene *ownerScene= mi->getOwnerScene();
// get a ptr on renderTrav
CRenderTrav *renderTrav= &ownerScene->getRenderTrav();
// get a ptr on the driver
IDriver *drv= renderTrav->getDriver();
nlassert(drv);
// Get the lod choosen in renderSkinGroupGeom()
CLod &lod= _Lods[_LastLodComputed];
// must update primitive cache
updateShiftedTriangleCache(mi, _LastLodComputed, baseVertex);
nlassert(mi->_ShiftedTriangleCache);
// Render Triangles with cache
//===========
for(uint i=0;i<lod.RdrPass.size();i++)
{
CRdrPass &rdrPass= lod.RdrPass[i];
// CMaterial Ref
CMaterial &material=mi->Materials[rdrPass.MaterialId];
// TestYoyo. Material Speed Test
/*if( material.getDiffuse()!=CRGBA(250, 251, 252) )
{
material.setDiffuse(CRGBA(250, 251, 252));
// Set all texture the same.
static CSmartPtr<ITexture> pTexFile= new CTextureFile("fy_hom_visage_c1_fy_e1.tga");
material.setTexture(0, pTexFile );
// Remove Specular.
if(material.getShader()==CMaterial::Specular)
{
CSmartPtr<ITexture> tex= material.getTexture(0);
material.setShader(CMaterial::Normal);
material.setTexture(0, tex );
}
// Remove MakeUp
material.setTexture(1, NULL);
}*/
// If the material is a specular material, don't render it now!
if(material.getShader()==CMaterial::Specular)
{
// Add it to the rdrPass to sort!
CSkinSpecularRdrPass specRdrPass;
specRdrPass.SkinIndex= skinIndex;
specRdrPass.RdrPassIndex= i;
// Get the handle of the specular Map as the sort Key
ITexture *specTex= material.getTexture(1);
if(!specTex)
specRdrPass.SpecId= 0;
else
specRdrPass.SpecId= drv->getTextureHandle( *specTex );
// Append it to the list
specularRdrPasses.push_back(specRdrPass);
}
else
{
// Get the shifted triangles.
CShiftedTriangleCache::CRdrPass &shiftedRdrPass= mi->_ShiftedTriangleCache->RdrPass[i];
// Render with the Materials of the MeshInstance.
drv->activeIndexBuffer(mi->_ShiftedTriangleCache->RawIndices);
drv->renderTriangles(material, shiftedRdrPass.Triangles, shiftedRdrPass.NumTriangles);
}
}
}
// ***************************************************************************
void CMeshMRMGeom::renderSkinGroupSpecularRdrPass(CMeshMRMInstance *mi, uint rdrPassId)
{
H_AUTO( NL3D_MeshMRMGeom_rdrSkinGrpSpecularRdrPass );
// get a ptr on scene
CScene *ownerScene= mi->getOwnerScene();
// get a ptr on renderTrav
CRenderTrav *renderTrav= &ownerScene->getRenderTrav();
// get a ptr on the driver
IDriver *drv= renderTrav->getDriver();
nlassert(drv);
// Get the lod choosen in renderSkinGroupGeom()
CLod &lod= _Lods[_LastLodComputed];
// _ShiftedTriangleCache must have been computed in renderSkinGroupPrimitives
nlassert(mi->_ShiftedTriangleCache);
// Render Triangles with cache
//===========
CRdrPass &rdrPass= lod.RdrPass[rdrPassId];
// CMaterial Ref
CMaterial &material=mi->Materials[rdrPass.MaterialId];
// Get the shifted triangles.
CShiftedTriangleCache::CRdrPass &shiftedRdrPass= mi->_ShiftedTriangleCache->RdrPass[rdrPassId];
// Render with the Materials of the MeshInstance.
drv->activeIndexBuffer(mi->_ShiftedTriangleCache->RawIndices);
drv->renderTriangles(material, shiftedRdrPass.Triangles, shiftedRdrPass.NumTriangles);
}
// ***************************************************************************
void CMeshMRMGeom::updateShiftedTriangleCache(CMeshMRMInstance *mi, sint curLodId, uint baseVertex)
{
// if the instance has a cache, but not sync to us, delete it.
if( mi->_ShiftedTriangleCache && (
mi->_ShiftedTriangleCache->MeshDataId != _MeshDataId ||
mi->_ShiftedTriangleCache->LodId != curLodId ||
mi->_ShiftedTriangleCache->BaseVertex != baseVertex) )
{
mi->clearShiftedTriangleCache();
}
// If the instance has not a valid cache, must create it.
if( !mi->_ShiftedTriangleCache )
{
mi->_ShiftedTriangleCache= new CShiftedTriangleCache;
// Fill the cache Key.
mi->_ShiftedTriangleCache->MeshDataId= _MeshDataId;
mi->_ShiftedTriangleCache->LodId= curLodId;
mi->_ShiftedTriangleCache->BaseVertex= baseVertex;
// Build list of PBlock. From Lod, or from RawSkin cache.
static vector<CIndexBuffer*> pbList;
pbList.clear();
if(mi->_RawSkinCache)
{
pbList.resize(mi->_RawSkinCache->RdrPass.size());
for(uint i=0;i<pbList.size();i++)
{
pbList[i]= &mi->_RawSkinCache->RdrPass[i];
}
}
else
{
CLod &lod= _Lods[curLodId];
pbList.resize(lod.RdrPass.size());
for(uint i=0;i<pbList.size();i++)
{
pbList[i]= &lod.RdrPass[i].PBlock;
}
}
// Build RdrPass
mi->_ShiftedTriangleCache->RdrPass.resize(pbList.size());
// First pass, count number of triangles, and fill header info
uint totalTri= 0;
uint i;
for(i=0;i<pbList.size();i++)
{
mi->_ShiftedTriangleCache->RdrPass[i].NumTriangles= pbList[i]->getNumIndexes()/3;
totalTri+= pbList[i]->getNumIndexes()/3;
}
// Allocate triangles indices.
mi->_ShiftedTriangleCache->RawIndices.setFormat(NL_MESH_MRM_INDEX_FORMAT);
mi->_ShiftedTriangleCache->RawIndices.setNumIndexes(totalTri*3);
// Lock the index buffer
CIndexBufferReadWrite ibaWrite;
mi->_ShiftedTriangleCache->RawIndices.lock (ibaWrite);
if (ibaWrite.getFormat() == CIndexBuffer::Indices32)
{
uint32 *dstPtr = (uint32 *) ibaWrite.getPtr();
// Second pass, fill ptrs, and fill Arrays
uint indexTri= 0;
for(i=0;i<pbList.size();i++)
{
CShiftedTriangleCache::CRdrPass &dstRdrPass= mi->_ShiftedTriangleCache->RdrPass[i];
dstRdrPass.Triangles= indexTri*3;
// Fill the array
uint numTris= pbList[i]->getNumIndexes()/3;
if(numTris)
{
uint nIds= numTris*3;
// index, and fill
CIndexBufferRead ibaRead;
pbList[i]->lock (ibaRead);
nlassert(ibaRead.getFormat() == CIndexBuffer::Indices32);
const uint32 *pSrcTri= (const uint32 *) ibaRead.getPtr();
uint32 *pDstTri= dstPtr+dstRdrPass.Triangles;
for(;nIds>0;nIds--,pSrcTri++,pDstTri++)
*pDstTri= *pSrcTri + baseVertex;
}
// Next
indexTri+= dstRdrPass.NumTriangles;
}
}
else
{
nlassert(ibaWrite.getFormat() == CIndexBuffer::Indices16);
uint16 *dstPtr = (uint16 *) ibaWrite.getPtr();
// Second pass, fill ptrs, and fill Arrays
uint indexTri= 0;
for(i=0;i<pbList.size();i++)
{
CShiftedTriangleCache::CRdrPass &dstRdrPass= mi->_ShiftedTriangleCache->RdrPass[i];
dstRdrPass.Triangles= indexTri*3;
// Fill the array
uint numTris= pbList[i]->getNumIndexes()/3;
if(numTris)
{
uint nIds= numTris*3;
// index, and fill
CIndexBufferRead ibaRead;
pbList[i]->lock (ibaRead);
nlassert(ibaRead.getFormat() == CIndexBuffer::Indices16);
const uint16 *pSrcTri= (const uint16 *) ibaRead.getPtr();
uint16 *pDstTri= (uint16 *) dstPtr+dstRdrPass.Triangles;
for(;nIds>0;nIds--,pSrcTri++,pDstTri++)
*pDstTri= *pSrcTri + baseVertex;
}
// Next
indexTri+= dstRdrPass.NumTriangles;
}
}
}
}
// ***************************************************************************
void CMeshMRMGeom::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
// because of complexity, serial is separated in save / load.
if(f.isReading())
load(f);
else
save(f);
}
// ***************************************************************************
sint CMeshMRMGeom::loadHeader(NLMISC::IStream &f) throw(NLMISC::EStream)
{
/*
Version 5:
- Shadow Skinning
Version 4:
- serial SkinWeights per MRM, not per Lod
Version 3:
- Bones names.
Version 2:
- Mesh Vertex Program.
Version 1:
- added blend shapes
Version 0:
- base version.
*/
sint ver= f.serialVersion(5);
// if >= version 3, serial boens names
if(ver>=3)
{
f.serialCont (_BonesName);
}
// Version3-: Bones index are in skeleton model id list
_BoneIdComputed = (ver < 3);
// Must always recompute usage of parents of bones used.
_BoneIdExtended = false;
// Mesh Vertex Program.
if (ver >= 2)
{
IMeshVertexProgram *mvp= NULL;
f.serialPolyPtr(mvp);
_MeshVertexProgram= mvp;
}
else
{
// release vp
_MeshVertexProgram= NULL;
}
// blend shapes
if (ver >= 1)
f.serial (_MeshMorpher);
// serial Basic info.
// ==================
f.serial(_Skinned);
f.serial(_BBox);
f.serial(_LevelDetail.MaxFaceUsed);
f.serial(_LevelDetail.MinFaceUsed);
f.serial(_LevelDetail.DistanceFinest);
f.serial(_LevelDetail.DistanceMiddle);
f.serial(_LevelDetail.DistanceCoarsest);
f.serial(_LevelDetail.OODistanceDelta);
f.serial(_LevelDetail.DistancePow);
// preload the Lods.
f.serialCont(_LodInfos);
// read/save number of wedges.
/* NB: prepare memory space too for vertices.
\todo yoyo: TODO_OPTIMIZE. for now there is no Lod memory profit with vertices / skinWeights.
But resizing arrays is a problem because of reallocation...
*/
uint32 nWedges;
f.serial(nWedges);
// Prepare the VBuffer.
_VBufferFinal.serialHeader(f);
// If skinned, must allocate skinWeights.
contReset(_SkinWeights);
if(_Skinned)
{
_SkinWeights.resize(nWedges);
}
// If new version, serial SkinWeights in header, not in lods.
if(ver >= 4)
{
f.serialCont(_SkinWeights);
}
// if >= version 5, serial Shadow Skin Information
if(ver>=5)
{
f.serialCont (_ShadowSkin.Vertices);
f.serialCont (_ShadowSkin.Triangles);
}
// Serial lod offsets.
// ==================
// This is the reference pos, to load / save relative offsets.
sint32 startPos = f.getPos();
// Those are the lodOffsets, relative to startPos.
vector<sint32> lodOffsets;
lodOffsets.resize(_LodInfos.size(), 0);
// read all relative offsets, and build the absolute offset of LodInfos.
for(uint i=0;i<_LodInfos.size(); i++)
{
f.serial(lodOffsets[i]);
_LodInfos[i].LodOffset= startPos + lodOffsets[i];
}
// resest the Lod arrays. NB: each Lod is empty, and ready to receive Lod data.
// ==================
contReset(_Lods);
_Lods.resize(_LodInfos.size());
// Flag the fact that no lod is loaded for now.
_NbLodLoaded= 0;
// Inform that the mesh data has changed
dirtMeshDataId();
// Some runtime not serialized compilation
compileRunTime();
// return version of the header
return ver;
}
// ***************************************************************************
void CMeshMRMGeom::load(NLMISC::IStream &f) throw(NLMISC::EStream)
{
// Load the header of the stream.
// ==================
sint verHeader= loadHeader(f);
// Read All lod subsets.
// ==================
for(uint i=0;i<_LodInfos.size(); i++)
{
// read the lod face data.
f.serial(_Lods[i]);
// read the lod vertex data.
serialLodVertexData(f, _LodInfos[i].StartAddWedge, _LodInfos[i].EndAddWedges);
// if reading, must bkup all original vertices from VB.
// this is done in serialLodVertexData(). by subset
}
// Now, all lods are loaded.
_NbLodLoaded= _Lods.size();
// If version doen't have boneNames, must build BoneId now.
if(verHeader <= 2)
{
buildBoneUsageVer2 ();
}
}
// ***************************************************************************
void CMeshMRMGeom::save(NLMISC::IStream &f) throw(NLMISC::EStream)
{
/*
Version 5:
- Shadow Skinning
Version 4:
- serial SkinWeights per MRM, not per Lod
Version 3:
- Bones names.
Version 2:
- Mesh Vertex Program.
Version 1:
- added blend shapes
Version 0:
- base version.
*/
sint ver= f.serialVersion(5);
uint i;
// if >= version 3, serial bones names
f.serialCont (_BonesName);
// Warning, if you have skinned this shape, you can't write it anymore because skinning id have been changed!
nlassert (_BoneIdComputed==false);
// Mesh Vertex Program.
if (ver >= 2)
{
IMeshVertexProgram *mvp= NULL;
mvp= _MeshVertexProgram;
f.serialPolyPtr(mvp);
}
// blend shapes
if (ver >= 1)
f.serial (_MeshMorpher);
// must have good original Skinned Vertex before writing.
if( _Skinned )
{
restoreOriginalSkinVertices();
}
// serial Basic info.
// ==================
f.serial(_Skinned);
f.serial(_BBox);
f.serial(_LevelDetail.MaxFaceUsed);
f.serial(_LevelDetail.MinFaceUsed);
f.serial(_LevelDetail.DistanceFinest);
f.serial(_LevelDetail.DistanceMiddle);
f.serial(_LevelDetail.DistanceCoarsest);
f.serial(_LevelDetail.OODistanceDelta);
f.serial(_LevelDetail.DistancePow);
f.serialCont(_LodInfos);
// save number of wedges.
uint32 nWedges;
nWedges= _VBufferFinal.getNumVertices();
f.serial(nWedges);
// Save the VBuffer header.
_VBufferFinal.serialHeader(f);
// If new version, serial SkinWeights in header, not in lods.
if(ver >= 4)
{
f.serialCont(_SkinWeights);
}
// if >= version 5, serial Shadow Skin Information
if(ver>=5)
{
f.serialCont (_ShadowSkin.Vertices);
f.serialCont (_ShadowSkin.Triangles);
}
// Serial lod offsets.
// ==================
// This is the reference pos, to load / save relative offsets.
sint32 startPos = f.getPos();
// Those are the lodOffsets, relative to startPos.
vector<sint32> lodOffsets;
lodOffsets.resize(_LodInfos.size(), 0);
// write all dummy offset. For now (since we don't know what to set), compute the offset of
// the sint32 to come back in serial lod parts below.
for(i=0;i<_LodInfos.size(); i++)
{
lodOffsets[i]= f.getPos();
f.serial(lodOffsets[i]);
}
// Serial lod subsets.
// ==================
// Save all the lods.
for(i=0;i<_LodInfos.size(); i++)
{
// get current absolute position.
sint32 absCurPos= f.getPos();
// come back to "relative lodOffset" absolute position in the stream. (temp stored in lodOffset[i]).
f.seek(lodOffsets[i], NLMISC::IStream::begin);
// write the relative position of the lod to the stream.
sint32 relCurPos= absCurPos - startPos;
f.serial(relCurPos);
// come back to absCurPos, to save the lod.
f.seek(absCurPos, NLMISC::IStream::begin);
// And so now, save the lod.
// write the lod face data.
f.serial(_Lods[i]);
// write the lod vertex data.
serialLodVertexData(f, _LodInfos[i].StartAddWedge, _LodInfos[i].EndAddWedges);
}
}
// ***************************************************************************
void CMeshMRMGeom::serialLodVertexData(NLMISC::IStream &f, uint startWedge, uint endWedge)
{
/*
Version 1:
- serial SkinWeights per MRM, not per Lod
*/
sint ver= f.serialVersion(1);
// VBuffer part.
_VBufferFinal.serialSubset(f, startWedge, endWedge);
// SkinWeights.
if(_Skinned)
{
// Serialize SkinWeight per lod only for old versions.
if(ver<1)
{
for(uint i= startWedge; i<endWedge; i++)
{
f.serial(_SkinWeights[i]);
}
}
// if reading, must copy original vertices from VB.
if( f.isReading())
{
bkupOriginalSkinVerticesSubset(startWedge, endWedge);
}
}
}
// ***************************************************************************
void CMeshMRMGeom::loadFirstLod(NLMISC::IStream &f)
{
// Load the header of the stream.
// ==================
sint verHeader= loadHeader(f);
// If empty MRM, quit.
if(_LodInfos.size()==0)
return;
/* If the version is <4, then SkinWeights are serialised per Lod.
But for computebonesId(), we must have all SkinWeights RIGHT NOW.
Hence, if too old version (<4), serialize all the MRM....
*/
uint numLodToLoad;
if(verHeader<4)
numLodToLoad= _LodInfos.size();
else
numLodToLoad= 1;
// Read lod subset(s).
// ==================
for(uint i=0;i<numLodToLoad; i++)
{
// read the lod face data.
f.serial(_Lods[i]);
// read the lod vertex data.
serialLodVertexData(f, _LodInfos[i].StartAddWedge, _LodInfos[i].EndAddWedges);
// if reading, must bkup all original vertices from VB.
// this is done in serialLodVertexData(). by subset
}
// Now, just first lod is loaded (but if too old file)
_NbLodLoaded= numLodToLoad;
// If version doen't have boneNames, must build BoneId now.
if(verHeader <= 2)
{
buildBoneUsageVer2 ();
}
}
// ***************************************************************************
void CMeshMRMGeom::loadNextLod(NLMISC::IStream &f)
{
// If all is loaded, quit.
if(getNbLodLoaded() == getNbLod())
return;
// Set pos to good lod.
f.seek(_LodInfos[_NbLodLoaded].LodOffset, NLMISC::IStream::begin);
// Serial this lod data.
// read the lod face data.
f.serial(_Lods[_NbLodLoaded]);
// read the lod vertex data.
serialLodVertexData(f, _LodInfos[_NbLodLoaded].StartAddWedge, _LodInfos[_NbLodLoaded].EndAddWedges);
// if reading, must bkup all original vertices from VB.
// this is done in serialLodVertexData(). by subset
// Inc LodLoaded count.
_NbLodLoaded++;
}
// ***************************************************************************
void CMeshMRMGeom::unloadNextLod(NLMISC::IStream &f)
{
// If just first lod remain (or no lod), quit
if(getNbLodLoaded() <= 1)
return;
// Reset the entire Lod object. (Free Memory).
contReset(_Lods[_NbLodLoaded-1]);
// Dec LodLoaded count.
_NbLodLoaded--;
}
// ***************************************************************************
void CMeshMRMGeom::bkupOriginalSkinVertices()
{
nlassert(_Skinned);
// bkup the entire array.
bkupOriginalSkinVerticesSubset(0, _VBufferFinal.getNumVertices());
}
// ***************************************************************************
void CMeshMRMGeom::bkupOriginalSkinVerticesSubset(uint wedgeStart, uint wedgeEnd)
{
nlassert(_Skinned);
CVertexBufferReadWrite vba;
_VBufferFinal.lock (vba);
// Copy VBuffer content into Original vertices normals.
if(_VBufferFinal.getVertexFormat() & CVertexBuffer::PositionFlag)
{
// copy vertices from VBuffer. (NB: unuseful geomorphed vertices are still copied, but doesn't matter).
_OriginalSkinVertices.resize(_VBufferFinal.getNumVertices());
for(uint i=wedgeStart; i<wedgeEnd;i++)
{
_OriginalSkinVertices[i]= *vba.getVertexCoordPointer(i);
}
}
if(_VBufferFinal.getVertexFormat() & CVertexBuffer::NormalFlag)
{
// copy normals from VBuffer. (NB: unuseful geomorphed normals are still copied, but doesn't matter).
_OriginalSkinNormals.resize(_VBufferFinal.getNumVertices());
for(uint i=wedgeStart; i<wedgeEnd;i++)
{
_OriginalSkinNormals[i]= *vba.getNormalCoordPointer(i);
}
}
// is there tangent space added ?
if (_MeshVertexProgram && _MeshVertexProgram->needTangentSpace())
{
// yes, backup it
nlassert(_VBufferFinal.getNumTexCoordUsed() > 0);
uint tgSpaceStage = _VBufferFinal.getNumTexCoordUsed() - 1;
_OriginalTGSpace.resize(_VBufferFinal.getNumVertices());
for(uint i=wedgeStart; i<wedgeEnd;i++)
{
_OriginalTGSpace[i]= *(CVector*)vba.getTexCoordPointer(i, tgSpaceStage);
}
}
}
// ***************************************************************************
void CMeshMRMGeom::restoreOriginalSkinVertices()
{
nlassert(_Skinned);
CVertexBufferReadWrite vba;
_VBufferFinal.lock (vba);
// Copy VBuffer content into Original vertices normals.
if(_VBufferFinal.getVertexFormat() & CVertexBuffer::PositionFlag)
{
// copy vertices from VBuffer. (NB: unuseful geomorphed vertices are still copied, but doesn't matter).
for(uint i=0; i<_VBufferFinal.getNumVertices();i++)
{
*vba.getVertexCoordPointer(i)= _OriginalSkinVertices[i];
}
}
if(_VBufferFinal.getVertexFormat() & CVertexBuffer::NormalFlag)
{
// copy normals from VBuffer. (NB: unuseful geomorphed normals are still copied, but doesn't matter).
for(uint i=0; i<_VBufferFinal.getNumVertices();i++)
{
*vba.getNormalCoordPointer(i)= _OriginalSkinNormals[i];
}
}
if (_MeshVertexProgram && _MeshVertexProgram->needTangentSpace())
{
uint numTexCoords = _VBufferFinal.getNumTexCoordUsed();
nlassert(numTexCoords >= 2);
nlassert(_OriginalTGSpace.size() == _VBufferFinal.getNumVertices());
// copy tangent space vectors
for(uint i = 0; i < _VBufferFinal.getNumVertices(); ++i)
{
*(CVector*)vba.getTexCoordPointer(i, numTexCoords - 1)= _OriginalTGSpace[i];
}
}
}
// ***************************************************************************
void CMeshMRMGeom::restoreOriginalSkinPart(CLod &lod)
{
nlassert(_Skinned);
/*
YOYO: _Skinned mrms no more support vertexBufferHard
see note in renderSkin()
*/
// get vertexPtr / normalOff.
//===========================
CVertexBufferReadWrite vba;
_VBufferFinal.lock (vba);
uint8 *destVertexPtr= (uint8*)vba.getVertexCoordPointer();
uint flags= _VBufferFinal.getVertexFormat();
sint32 vertexSize= _VBufferFinal.getVertexSize();
// must have XYZ.
nlassert(flags & CVertexBuffer::PositionFlag);
// Compute offset of each component of the VB.
sint32 normalOff;
if(flags & CVertexBuffer::NormalFlag)
normalOff= _VBufferFinal.getNormalOff();
else
normalOff= 0;
// compute src array.
CVector *srcVertexPtr;
CVector *srcNormalPtr= NULL;
srcVertexPtr= &_OriginalSkinVertices[0];
if(normalOff)
srcNormalPtr= &(_OriginalSkinNormals[0]);
// copy skinning.
//===========================
for(uint i=0;i<NL3D_MESH_SKINNING_MAX_MATRIX;i++)
{
uint nInf= lod.InfluencedVertices[i].size();
if( nInf==0 )
continue;
uint32 *infPtr= &(lod.InfluencedVertices[i][0]);
// for all InfluencedVertices only.
for(;nInf>0;nInf--, infPtr++)
{
uint index= *infPtr;
CVector *srcVertex= srcVertexPtr + index;
CVector *srcNormal= srcNormalPtr + index;
uint8 *dstVertexVB= destVertexPtr + index * vertexSize;
CVector *dstVertex= (CVector*)(dstVertexVB);
CVector *dstNormal= (CVector*)(dstVertexVB + normalOff);
// Vertex.
*dstVertex= *srcVertex;
// Normal.
if(normalOff)
*dstNormal= *srcNormal;
}
}
// clean this lod part. (NB: this is not optimal, but sufficient :) ).
lod.OriginalSkinRestored= true;
}
// ***************************************************************************
float CMeshMRMGeom::getNumTriangles (float distance)
{
// NB: this is an approximation, but this is continious.
return _LevelDetail.getNumTriangles(distance);
}
// ***************************************************************************
void CMeshMRMGeom::computeBonesId (CSkeletonModel *skeleton)
{
// Already computed ?
if (!_BoneIdComputed)
{
// Get a pointer on the skeleton
nlassert (skeleton);
if (skeleton)
{
// **** For each bones, compute remap
std::vector<uint> remap;
skeleton->remapSkinBones(_BonesName, _BonesId, remap);
// **** Remap the vertices, and compute Bone Spheres.
// Find the Geomorph space: to process only real vertices, not geomorphed ones.
uint nGeomSpace= 0;
uint lod;
for (lod=0; lod<_Lods.size(); lod++)
{
nGeomSpace= max(nGeomSpace, (uint)_Lods[lod].Geomorphs.size());
}
// Prepare Sphere compute
nlassert(_OriginalSkinVertices.size() == _SkinWeights.size());
static std::vector<CAABBox> boneBBoxes;
static std::vector<bool> boneBBEmpty;
boneBBoxes.clear();
boneBBEmpty.clear();
boneBBoxes.resize(_BonesId.size());
boneBBEmpty.resize(_BonesId.size(), true);
// Remap the vertex, and compute the bone spheres. see CTransform::getSkinBoneSphere() doc.
// for true vertices
uint vert;
for (vert=nGeomSpace; vert<_SkinWeights.size(); vert++)
{
// get the vertex position.
CVector vertex= _OriginalSkinVertices[vert];
// For each weight
uint weight;
for (weight=0; weight<NL3D_MESH_SKINNING_MAX_MATRIX; weight++)
{
// Active ?
if ((_SkinWeights[vert].Weights[weight]>0)||(weight==0))
{
// Check id
uint srcId= _SkinWeights[vert].MatrixId[weight];
nlassert (srcId < remap.size());
// remap
_SkinWeights[vert].MatrixId[weight] = remap[srcId];
// if the boneId is valid (ie found)
if(_BonesId[srcId]>=0)
{
// transform the vertex pos in BoneSpace
CVector p= skeleton->Bones[_BonesId[srcId]].getBoneBase().InvBindPos * vertex;
// extend the bone bbox.
if(boneBBEmpty[srcId])
{
boneBBoxes[srcId].setCenter(p);
boneBBEmpty[srcId]= false;
}
else
{
boneBBoxes[srcId].extend(p);
}
}
}
else
break;
}
}
// Compile spheres
_BonesSphere.resize(_BonesId.size());
for(uint bone=0;bone<_BonesSphere.size();bone++)
{
// If the bone is empty, mark with -1 in the radius.
if(boneBBEmpty[bone])
{
_BonesSphere[bone].Radius= -1;
}
else
{
_BonesSphere[bone].Center= boneBBoxes[bone].getCenter();
_BonesSphere[bone].Radius= boneBBoxes[bone].getRadius();
}
}
// **** Remap the vertex influence by lods
for (lod=0; lod<_Lods.size(); lod++)
{
// For each matrix used
uint matrix;
for (matrix=0; matrix<_Lods[lod].MatrixInfluences.size(); matrix++)
{
// Check
nlassert (_Lods[lod].MatrixInfluences[matrix]<remap.size());
// Remap
_Lods[lod].MatrixInfluences[matrix] = remap[_Lods[lod].MatrixInfluences[matrix]];
}
}
// **** Remap Shadow Vertices.
for(vert=0;vert<_ShadowSkin.Vertices.size();vert++)
{
CShadowVertex &v= _ShadowSkin.Vertices[vert];
// Check id
nlassert (v.MatrixId < remap.size());
v.MatrixId= remap[v.MatrixId];
}
// Computed
_BoneIdComputed = true;
}
}
// Already extended ?
if (!_BoneIdExtended)
{
nlassert (skeleton);
if (skeleton)
{
// the total bone Usage of the mesh.
vector<bool> boneUsage;
boneUsage.resize(skeleton->Bones.size(), false);
// for all Bones marked as valid.
uint i;
for(i=0; i<_BonesId.size(); i++)
{
// if not a valid boneId, skip it.
if(_BonesId[i]<0)
continue;
// mark him and his father in boneUsage.
skeleton->flagBoneAndParents(_BonesId[i], boneUsage);
}
// fill _BonesIdExt with bones of _BonesId and their parents.
_BonesIdExt.clear();
for(i=0; i<boneUsage.size();i++)
{
// if the bone is used by the mesh, add it to BoneIdExt.
if(boneUsage[i])
_BonesIdExt.push_back(i);
}
}
// Extended
_BoneIdExtended= true;
}
}
// ***************************************************************************
void CMeshMRMGeom::buildBoneUsageVer2 ()
{
if(_Skinned)
{
// parse all vertices, couting MaxBoneId used.
uint32 maxBoneId= 0;
// for each vertex
uint vert;
for (vert=0; vert<_SkinWeights.size(); vert++)
{
// For each weight
for (uint weight=0; weight<NL3D_MESH_SKINNING_MAX_MATRIX; weight++)
{
// Active ?
if ((_SkinWeights[vert].Weights[weight]>0)||(weight==0))
{
maxBoneId= max(_SkinWeights[vert].MatrixId[weight], maxBoneId);
}
}
}
// alloc an array of maxBoneId+1, reset to 0.
std::vector<uint8> boneUsage;
boneUsage.resize(maxBoneId+1, 0);
// reparse all vertices, counting usage for each bone.
for (vert=0; vert<_SkinWeights.size(); vert++)
{
// For each weight
for (uint weight=0; weight<NL3D_MESH_SKINNING_MAX_MATRIX; weight++)
{
// Active ?
if ((_SkinWeights[vert].Weights[weight]>0)||(weight==0))
{
// mark this bone as used.
boneUsage[_SkinWeights[vert].MatrixId[weight]]= 1;
}
}
}
// For each bone used
_BonesId.clear();
for(uint i=0; i<boneUsage.size();i++)
{
// if the bone is used by the mesh, add it to BoneId.
if(boneUsage[i])
_BonesId.push_back(i);
}
}
}
// ***************************************************************************
void CMeshMRMGeom::updateSkeletonUsage(CSkeletonModel *sm, bool increment)
{
// For all Bones used.
for(uint i=0; i<_BonesIdExt.size();i++)
{
uint boneId= _BonesIdExt[i];
// Some explicit Error.
if(boneId>=sm->Bones.size())
nlerror(" Skin is incompatible with Skeleton: tries to use bone %d", boneId);
// increment or decrement not Forced, because CMeshGeom use getActiveBoneSkinMatrix().
if(increment)
sm->incBoneUsage(boneId, CSkeletonModel::UsageNormal);
else
sm->decBoneUsage(boneId, CSkeletonModel::UsageNormal);
}
}
// ***************************************************************************
void CMeshMRMGeom::compileRunTime()
{
_PreciseClipping= _BBox.getRadius() >= NL3D_MESH_PRECISE_CLIP_THRESHOLD;
// Compute if can support SkinGrouping rendering
if(_Lods.size()==0 || !_Skinned)
{
_SupportSkinGrouping= false;
_SupportShadowSkinGrouping= false;
}
else
{
// The Mesh must follow those restrictions, to support group skinning
_SupportSkinGrouping=
_VBufferFinal.getVertexFormat() == NL3D_MESH_SKIN_MANAGER_VERTEXFORMAT &&
_VBufferFinal.getNumVertices() < NL3D_MESH_SKIN_MANAGER_MAXVERTICES &&
!_MeshVertexProgram;
// Support Shadow SkinGrouping if Shadow setuped, and if not too many vertices.
_SupportShadowSkinGrouping= !_ShadowSkin.Vertices.empty() &&
NL3D_SHADOW_MESH_SKIN_MANAGER_VERTEXFORMAT==CVertexBuffer::PositionFlag &&
_ShadowSkin.Vertices.size() <= NL3D_SHADOW_MESH_SKIN_MANAGER_MAXVERTICES;
}
// Support MeshBlockRendering only if not skinned/meshMorphed.
_SupportMeshBlockRendering= !_Skinned && _MeshMorpher.BlendShapes.size()==0;
// \todo yoyo: support later MeshVertexProgram
_SupportMeshBlockRendering= _SupportMeshBlockRendering && _MeshVertexProgram==NULL;
}
// ***************************************************************************
void CMeshMRMGeom::profileSceneRender(CRenderTrav *rdrTrav, CTransformShape *trans, float polygonCount, uint32 rdrFlags)
{
// if no _Lods, no draw
if(_Lods.empty())
return;
// get the result of the Load Balancing.
float alphaMRM= _LevelDetail.getLevelDetailFromPolyCount(polygonCount);
// choose the lod.
float alphaLod;
sint numLod= chooseLod(alphaMRM, alphaLod);
// Render the choosen Lod.
CLod &lod= _Lods[numLod];
// get the mesh instance.
CMeshBaseInstance *mi= safe_cast<CMeshBaseInstance*>(trans);
// Profile all pass.
uint triCount= 0;
for (uint i=0;i<lod.RdrPass.size();i++)
{
CRdrPass &rdrPass= lod.RdrPass[i];
// Profile with the Materials of the MeshInstance.
if ( ( (mi->Materials[rdrPass.MaterialId].getBlend() == false) && (rdrFlags & IMeshGeom::RenderOpaqueMaterial) ) ||
( (mi->Materials[rdrPass.MaterialId].getBlend() == true) && (rdrFlags & IMeshGeom::RenderTransparentMaterial) ) )
{
triCount+= rdrPass.PBlock.getNumIndexes()/3;
}
}
// Profile
if(triCount)
{
// tri per VBFormat
rdrTrav->Scene->incrementProfileTriVBFormat(rdrTrav->Scene->BenchRes.MeshMRMProfileTriVBFormat,
_VBufferFinal.getVertexFormat(), triCount);
// VBHard
if(_VBufferFinal.getPreferredMemory()!=CVertexBuffer::RAMPreferred)
rdrTrav->Scene->BenchRes.NumMeshMRMVBufferHard++;
else
rdrTrav->Scene->BenchRes.NumMeshMRMVBufferStd++;
// rendered in BlockRendering, only if not transparent pass (known it if RenderTransparentMaterial is set)
if(supportMeshBlockRendering() && (rdrFlags & IMeshGeom::RenderTransparentMaterial)==0 )
{
if(isMeshInVBHeap())
{
rdrTrav->Scene->BenchRes.NumMeshMRMRdrBlockWithVBHeap++;
rdrTrav->Scene->BenchRes.NumMeshMRMTriRdrBlockWithVBHeap+= triCount;
}
else
{
rdrTrav->Scene->BenchRes.NumMeshMRMRdrBlock++;
rdrTrav->Scene->BenchRes.NumMeshMRMTriRdrBlock+= triCount;
}
}
else
{
rdrTrav->Scene->BenchRes.NumMeshMRMRdrNormal++;
rdrTrav->Scene->BenchRes.NumMeshMRMTriRdrNormal+= triCount;
}
}
}
// ***************************************************************************
bool CMeshMRMGeom::buildGeometryForLod(uint lodId, std::vector<CVector> &vertices, std::vector<uint32> &triangles) const
{
if(lodId>=_Lods.size())
return false;
// avoid slow lock
if(_VBufferFinal.isResident())
return false;
// clear first
vertices.clear();
triangles.clear();
// **** First, for the lod indicate what vertex is used or not. Also index geomorphs to know what real vertex is used
static vector<sint> vertexRemap;
vertexRemap.clear();
// -1 means "not used"
vertexRemap.resize(_VBufferFinal.getNumVertices(), -1);
// count also total number of indices
uint numTotalIndices= 0;
// Parse all triangles.
uint i;
for(i=0;i<getNbRdrPass(lodId);i++)
{
const CIndexBuffer &pb = getRdrPassPrimitiveBlock(lodId, i);
// avoid slow lock
if(pb.isResident())
return false;
CIndexBufferRead iba;
pb.lock (iba);
nlassert(iba.getFormat()==NL_MESH_MRM_INDEX_FORMAT);
TMeshMRMIndexType *src= (TMeshMRMIndexType *) iba.getPtr();
for(uint n= pb.getNumIndexes();n>0;n--, src++)
{
uint idx= *src;
// Flag the vertex with its own index => used.
vertexRemap[idx]= idx;
}
// total num indices
numTotalIndices+= pb.getNumIndexes();
}
// Special for Geomorphs: must take The End target vertex.
const std::vector<CMRMWedgeGeom> &geomorphs= getGeomorphs(lodId);
for(i=0;i<geomorphs.size();i++)
{
uint trueIdx= geomorphs[i].End;
// map to the Geomorph Target.
vertexRemap[i]= trueIdx;
// mark also the real vertex used as used.
vertexRemap[trueIdx]= trueIdx;
}
// if no index, abort
if(numTotalIndices==0)
return false;
// **** count number of vertices really used (skip geomorphs)
uint numUsedVertices=0;
for(i=geomorphs.size();i<vertexRemap.size();i++)
{
if(vertexRemap[i]>=0)
numUsedVertices++;
}
// if none, abort
if(numUsedVertices==0)
return false;
// Then we have our vertices size
vertices.resize(numUsedVertices);
// **** Fill the vertex geometry
{
// Lock input VB
CVertexBufferRead vba;
_VBufferFinal.lock(vba);
// get the start vert, beginning at end of geomorphs
const uint8 *pSrcVert= (const uint8*)vba.getVertexCoordPointer(geomorphs.size());
uint32 vertSize= _VBufferFinal.getVertexSize();
CVector *pDstVert= &vertices[0];
uint dstIndex= 0;
// Then run all input vertices (skip geomorphs)
for(i=geomorphs.size();i<vertexRemap.size();i++)
{
// if the vertex is used
if(vertexRemap[i]>=0)
{
// Final remaping of vertex to final index
vertexRemap[i]= dstIndex;
// copy to dest
*pDstVert= *(CVector*)pSrcVert;
// next dest
pDstVert++;
dstIndex++;
}
// next src
pSrcVert+= vertSize;
}
// should have fill the entire buffer
nlassert(uint(pDstVert-(&vertices[0]))==numUsedVertices);
// Resolve remapping for geomorphs
for(i=0;i<geomorphs.size();i++)
{
// use the same final index as the EndGeomorph vertex
uint endGeomIdx= vertexRemap[i];
vertexRemap[i]= vertexRemap[endGeomIdx];
}
}
// **** Fill the indices
triangles.resize(numTotalIndices);
uint32 *pDstIndex= &triangles[0];
// for all render pass
for(i=0;i<getNbRdrPass(lodId);i++)
{
const CIndexBuffer &pb = getRdrPassPrimitiveBlock(lodId, i);
CIndexBufferRead iba;
pb.lock (iba);
TMeshMRMIndexType *src= (TMeshMRMIndexType *) iba.getPtr();
for(uint n= pb.getNumIndexes();n>0;n--, src++)
{
// resolve any geomorph, and final remapping
uint remapedIdx= vertexRemap[*src];
nlassert(remapedIdx<vertices.size());
*pDstIndex= remapedIdx;
pDstIndex++;
}
}
// should have filled the entire buffer
nlassert(uint(pDstIndex-(&triangles[0]))==numTotalIndices);
return true;
}
// ***************************************************************************
// ***************************************************************************
// Mesh Block Render Interface
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
bool CMeshMRMGeom::supportMeshBlockRendering () const
{
/*
Yoyo: Don't Support It for MRM because too Slow!!
The problem is that lock() unlock() on each instance, on the same VBHeap IS AS SLOWER AS
VB switching.
TODO_OPTIMIZE: find a way to optimize MRM.
*/
return false;
//return _SupportMeshBlockRendering;
}
// ***************************************************************************
bool CMeshMRMGeom::sortPerMaterial() const
{
// Can't do it per material since 2 lods may not have the same number of RdrPass!!
return false;
}
// ***************************************************************************
uint CMeshMRMGeom::getNumRdrPassesForMesh() const
{
// not used...
return 0;
}
// ***************************************************************************
uint CMeshMRMGeom::getNumRdrPassesForInstance(CMeshBaseInstance *inst) const
{
return _Lods[_MBRCurrentLodId].RdrPass.size();
}
// ***************************************************************************
void CMeshMRMGeom::beginMesh(CMeshGeomRenderContext &rdrCtx)
{
if(_Lods.empty())
return;
IDriver *drv= rdrCtx.Driver;
if(rdrCtx.RenderThroughVBHeap)
{
// Don't setup VB in this case, since use the VBHeap setuped one.
}
else
{
drv->activeVertexBuffer(_VBufferFinal);
}
// force normalisation of normals..
_MBRBkupNormalize= drv->isForceNormalize();
drv->forceNormalize(true);
}
// ***************************************************************************
void CMeshMRMGeom::activeInstance(CMeshGeomRenderContext &rdrCtx, CMeshBaseInstance *inst, float polygonCount, void *vbDst)
{
H_AUTO( NL3D_MeshMRMGeom_RenderNormal );
if(_Lods.empty())
return;
// get the result of the Load Balancing.
float alphaMRM= _LevelDetail.getLevelDetailFromPolyCount(polygonCount);
// choose the lod.
float alphaLod;
_MBRCurrentLodId= chooseLod(alphaMRM, alphaLod);
// Geomorph the choosen Lod (if not the coarser mesh).
if(_MBRCurrentLodId>0)
{
if(rdrCtx.RenderThroughVBHeap)
applyGeomorphWithVBHardPtr(_Lods[_MBRCurrentLodId].Geomorphs, alphaLod, (uint8*)vbDst);
else
applyGeomorph(_Lods[_MBRCurrentLodId].Geomorphs, alphaLod);
}
// set the instance worldmatrix.
rdrCtx.Driver->setupModelMatrix(inst->getWorldMatrix());
// setupLighting.
inst->changeLightSetup(rdrCtx.RenderTrav);
}
// ***************************************************************************
void CMeshMRMGeom::renderPass(CMeshGeomRenderContext &rdrCtx, CMeshBaseInstance *mi, float polygonCount, uint rdrPassId)
{
if(_Lods.empty())
return;
CLod &lod= _Lods[_MBRCurrentLodId];
CRdrPass &rdrPass= lod.RdrPass[rdrPassId];
if ( mi->Materials[rdrPass.MaterialId].getBlend() == false )
{
// CMaterial Ref
CMaterial &material=mi->Materials[rdrPass.MaterialId];
// Render with the Materials of the MeshInstance.
if(rdrCtx.RenderThroughVBHeap)
{
// render shifted primitives
rdrCtx.Driver->activeIndexBuffer(rdrPass.VBHeapPBlock);
rdrCtx.Driver->renderTriangles(material, 0, rdrPass.VBHeapPBlock.getNumIndexes()/3);
}
else
{
rdrCtx.Driver->activeIndexBuffer(rdrPass.PBlock);
rdrCtx.Driver->renderTriangles(material, 0, rdrPass.PBlock.getNumIndexes()/3);
}
}
}
// ***************************************************************************
void CMeshMRMGeom::endMesh(CMeshGeomRenderContext &rdrCtx)
{
if(_Lods.empty())
return;
// bkup force normalisation.
rdrCtx.Driver->forceNormalize(_MBRBkupNormalize);
}
// ***************************************************************************
bool CMeshMRMGeom::getVBHeapInfo(uint &vertexFormat, uint &numVertices)
{
// CMeshMRMGeom support VBHeap rendering, assuming _SupportMeshBlockRendering is true
vertexFormat= _VBufferFinal.getVertexFormat();
numVertices= _VBufferFinal.getNumVertices();
return _SupportMeshBlockRendering;
}
// ***************************************************************************
void CMeshMRMGeom::computeMeshVBHeap(void *dst, uint indexStart)
{
// Fill dst with Buffer content.
CVertexBufferRead vba;
_VBufferFinal.lock (vba);
memcpy(dst, vba.getVertexCoordPointer(), _VBufferFinal.getNumVertices()*_VBufferFinal.getVertexSize() );
// For All Lods
for(uint lodId=0; lodId<_Lods.size();lodId++)
{
CLod &lod= _Lods[lodId];
// For all rdrPass.
for(uint i=0;i<lod.RdrPass.size();i++)
{
// shift the PB
CIndexBuffer &srcPb= lod.RdrPass[i].PBlock;
CIndexBuffer &dstPb= lod.RdrPass[i].VBHeapPBlock;
uint j;
// Tris.
CIndexBufferRead ibaRead;
srcPb.lock (ibaRead);
CIndexBufferReadWrite ibaWrite;
srcPb.lock (ibaWrite);
dstPb.setNumIndexes(srcPb.getNumIndexes());
// nico : apparently not used, so don't manage 16 bit index here
nlassert(ibaRead.getIndexNumBytes() == sizeof(uint32));
nlassert(ibaWrite.getIndexNumBytes() == sizeof(uint32));
nlassert(ibaRead.getFormat() == CIndexBuffer::Indices32); // nico : apparently not called for now
const uint32 *srcTriPtr= (const uint32 *) ibaRead.getPtr();
uint32 *dstTriPtr= (uint32 *) ibaWrite.getPtr();
for(j=0; j<dstPb.getNumIndexes();j++)
{
dstTriPtr[j]= srcTriPtr[j]+indexStart;
}
}
}
}
// ***************************************************************************
bool CMeshMRMGeom::isActiveInstanceNeedVBFill() const
{
// Yes, need it for geomorph
return true;
}
// ***************************************************************************
// ***************************************************************************
// CMeshMRM.
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
CMeshMRM::CMeshMRM()
{
}
// ***************************************************************************
void CMeshMRM::build (CMeshBase::CMeshBaseBuild &mBase, CMesh::CMeshBuild &m,
std::vector<CMesh::CMeshBuild*> &listBS,
const CMRMParameters &params)
{
/// copy MeshBase info: materials ....
CMeshBase::buildMeshBase (mBase);
// Then build the geom.
_MeshMRMGeom.build (m, listBS, mBase.Materials.size(), params);
}
// ***************************************************************************
void CMeshMRM::build (CMeshBase::CMeshBaseBuild &m, const CMeshMRMGeom &mgeom)
{
/// copy MeshBase info: materials ....
CMeshBase::buildMeshBase(m);
// Then copy the geom.
_MeshMRMGeom= mgeom;
}
// ***************************************************************************
void CMeshMRM::optimizeMaterialUsage(std::vector<sint> &remap)
{
// For each material, count usage.
vector<bool> materialUsed;
materialUsed.resize(CMeshBase::_Materials.size(), false);
for(uint lod=0;lod<getNbLod();lod++)
{
for(uint rp=0;rp<getNbRdrPass(lod);rp++)
{
uint matId= getRdrPassMaterial(lod, rp);
// flag as used.
materialUsed[matId]= true;
}
}
// Apply it to meshBase
CMeshBase::applyMaterialUsageOptim(materialUsed, remap);
// Apply lut to meshGeom.
_MeshMRMGeom.applyMaterialRemap(remap);
}
// ***************************************************************************
CTransformShape *CMeshMRM::createInstance(CScene &scene)
{
// Create a CMeshMRMInstance, an instance of a mesh.
//===============================================
CMeshMRMInstance *mi= (CMeshMRMInstance*)scene.createModel(NL3D::MeshMRMInstanceId);
mi->Shape= this;
// instanciate the material part of the MeshMRM, ie the CMeshBase.
CMeshBase::instanciateMeshBase(mi, &scene);
// do some instance init for MeshGeom
_MeshMRMGeom.initInstance(mi);
// init the FilterType
mi->initRenderFilterType();
return mi;
}
// ***************************************************************************
bool CMeshMRM::clip(const std::vector<CPlane> &pyramid, const CMatrix &worldMatrix)
{
return _MeshMRMGeom.clip(pyramid, worldMatrix);
}
// ***************************************************************************
void CMeshMRM::render(IDriver *drv, CTransformShape *trans, bool passOpaque)
{
// 0 or 0xFFFFFFFF
uint32 mask= (0-(uint32)passOpaque);
uint32 rdrFlags;
// select rdrFlags, without ifs.
rdrFlags= mask & (IMeshGeom::RenderOpaqueMaterial | IMeshGeom::RenderPassOpaque);
rdrFlags|= ~mask & (IMeshGeom::RenderTransparentMaterial);
// render the mesh
_MeshMRMGeom.render(drv, trans, trans->getNumTrianglesAfterLoadBalancing(), rdrFlags, 1);
}
// ***************************************************************************
void CMeshMRM::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
/*
Version 0:
- base version.
*/
(void)f.serialVersion(0);
// serial Materials infos contained in CMeshBase.
CMeshBase::serialMeshBase(f);
// serial the geometry.
_MeshMRMGeom.serial(f);
}
// ***************************************************************************
float CMeshMRM::getNumTriangles (float distance)
{
return _MeshMRMGeom.getNumTriangles (distance);
}
// ***************************************************************************
const CMeshMRMGeom& CMeshMRM::getMeshGeom () const
{
return _MeshMRMGeom;
}
// ***************************************************************************
void CMeshMRM::computeBonesId (CSkeletonModel *skeleton)
{
_MeshMRMGeom.computeBonesId (skeleton);
}
// ***************************************************************************
void CMeshMRM::updateSkeletonUsage (CSkeletonModel *skeleton, bool increment)
{
_MeshMRMGeom.updateSkeletonUsage(skeleton, increment);
}
// ***************************************************************************
void CMeshMRM::changeMRMDistanceSetup(float distanceFinest, float distanceMiddle, float distanceCoarsest)
{
_MeshMRMGeom.changeMRMDistanceSetup(distanceFinest, distanceMiddle, distanceCoarsest);
}
// ***************************************************************************
IMeshGeom *CMeshMRM::supportMeshBlockRendering (CTransformShape *trans, float &polygonCount ) const
{
// Ok if meshGeom is ok.
if(_MeshMRMGeom.supportMeshBlockRendering())
{
polygonCount= trans->getNumTrianglesAfterLoadBalancing();
return (IMeshGeom*)&_MeshMRMGeom;
}
else
return NULL;
}
// ***************************************************************************
void CMeshMRM::profileSceneRender(CRenderTrav *rdrTrav, CTransformShape *trans, bool passOpaque)
{
// 0 or 0xFFFFFFFF
uint32 mask= (0-(uint32)passOpaque);
uint32 rdrFlags;
// select rdrFlags, without ifs.
rdrFlags= mask & (IMeshGeom::RenderOpaqueMaterial | IMeshGeom::RenderPassOpaque);
rdrFlags|= ~mask & (IMeshGeom::RenderTransparentMaterial);
// profile the mesh
_MeshMRMGeom.profileSceneRender(rdrTrav, trans, trans->getNumTrianglesAfterLoadBalancing(), rdrFlags);
}
// ***************************************************************************
void CMeshMRM::buildSystemGeometry()
{
// clear any
_SystemGeometry.clear();
// don't build a system copy if skinned. In this case, ray intersection is done through CSkeletonModel
// and intersectSkin() scheme
if(_MeshMRMGeom.isSkinned())
return;
// Choose the best Lod available for system geometry
if(_MeshMRMGeom.getNbLodLoaded()==0)
return;
uint lodId= _MeshMRMGeom.getNbLodLoaded()-1;
// retrieve geometry (if VB/IB not resident)
if( !_MeshMRMGeom.buildGeometryForLod(lodId, _SystemGeometry.Vertices, _SystemGeometry.Triangles) )
{
_SystemGeometry.clear();
}
// TestYoyo
/*static uint32 totalMem= 0;
totalMem+= _SystemGeometry.Vertices.size()*sizeof(CVector);
totalMem+= _SystemGeometry.Triangles.size()*sizeof(uint32);
nlinfo("CMeshMRM: TotalMem: %d", totalMem);*/
}
// ***************************************************************************
// ***************************************************************************
// CMeshMRMGeom RawSkin optimisation
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
void CMeshMRMGeom::dirtMeshDataId()
{
// see updateRawSkinNormal()
_MeshDataId++;
}
// ***************************************************************************
void CMeshMRMGeom::updateRawSkinNormal(bool enabled, CMeshMRMInstance *mi, sint curLodId)
{
if(!enabled)
{
// if the instance cache is not cleared, must clear.
if(mi->_RawSkinCache)
mi->clearRawSkinCache();
}
else
{
// If the instance has no RawSkin, or has a too old RawSkin cache, must delete it, and recreate
if( !mi->_RawSkinCache || mi->_RawSkinCache->MeshDataId!=_MeshDataId)
{
// first delete if too old.
if(mi->_RawSkinCache)
mi->clearRawSkinCache();
// Then recreate, and use _MeshDataId to verify that the instance works with same data.
mi->_RawSkinCache= new CRawSkinNormalCache;
mi->_RawSkinCache->MeshDataId= _MeshDataId;
mi->_RawSkinCache->LodId= -1;
}
/* If the instance rawSkin has a different Lod (or if -1), then must recreate it.
NB: The lod may change each frame per instance, but suppose not so many change, so we can cache those data.
*/
if( mi->_RawSkinCache->LodId != curLodId )
{
H_AUTO( NL3D_CMeshMRMGeom_updateRawSkinNormal );
CVertexBufferRead vba;
_VBufferFinal.lock (vba);
CRawSkinNormalCache &skinLod= *mi->_RawSkinCache;
CLod &lod= _Lods[curLodId];
uint i;
sint rawIdx;
// Clear the raw skin mesh.
skinLod.clearArrays();
// Cache this lod
mi->_RawSkinCache->LodId= curLodId;
// For each matrix influence.
nlassert(NL3D_MESH_SKINNING_MAX_MATRIX==4);
// For each vertex, acknowledge if it is a src for geomorph.
static vector<uint8> softVertices;
softVertices.clear();
softVertices.resize( _VBufferFinal.getNumVertices(), 0 );
for(i=0;i<lod.Geomorphs.size();i++)
{
softVertices[lod.Geomorphs[i].Start]= 1;
softVertices[lod.Geomorphs[i].End]= 1;
}
// The remap from old index in _VBufferFinal to RawSkin vertices (without Geomorphs).
static vector<TMeshMRMIndexType> vertexRemap;
vertexRemap.resize( _VBufferFinal.getNumVertices() );
sint softSize[4];
sint hardSize[4];
sint softStart[4];
sint hardStart[4];
// count vertices
skinLod.TotalSoftVertices= 0;
skinLod.TotalHardVertices= 0;
for(i=0;i<4;i++)
{
softSize[i]= 0;
hardSize[i]= 0;
// Count.
for(uint j=0;j<lod.InfluencedVertices[i].size();j++)
{
uint vid= lod.InfluencedVertices[i][j];
if(softVertices[vid])
softSize[i]++;
else
hardSize[i]++;
}
skinLod.TotalSoftVertices+= softSize[i];
skinLod.TotalHardVertices+= hardSize[i];
skinLod.SoftVertices[i]= softSize[i];
skinLod.HardVertices[i]= hardSize[i];
}
// compute offsets
softStart[0]= 0;
hardStart[0]= skinLod.TotalSoftVertices;
for(i=1;i<4;i++)
{
softStart[i]= softStart[i-1]+softSize[i-1];
hardStart[i]= hardStart[i-1]+hardSize[i-1];
}
// compute remap
for(i=0;i<4;i++)
{
uint softIdx= softStart[i];
uint hardIdx= hardStart[i];
for(uint j=0;j<lod.InfluencedVertices[i].size();j++)
{
uint vid= lod.InfluencedVertices[i][j];
if(softVertices[vid])
vertexRemap[vid]= softIdx++;
else
vertexRemap[vid]= hardIdx++;
}
}
// Resize the dest array.
skinLod.Vertices1.resize(lod.InfluencedVertices[0].size());
skinLod.Vertices2.resize(lod.InfluencedVertices[1].size());
skinLod.Vertices3.resize(lod.InfluencedVertices[2].size());
skinLod.Vertices4.resize(lod.InfluencedVertices[3].size());
// Remap for BlendShape. Lasts 2 bits tells what RawSkin Array to seek (1 to 4),
// low Bits indicate the number in them. 0xFFFFFFFF is a special value indicating "NotUsed in this lod"
static vector<uint32> vertexFinalRemap;
vertexFinalRemap.clear();
vertexFinalRemap.resize(vertexRemap.size(), 0xFFFFFFFF);
// 1 Matrix skinning.
//========
for(i=0;i<skinLod.Vertices1.size();i++)
{
// get the dest vertex.
uint vid= lod.InfluencedVertices[0][i];
// where to store?
rawIdx= vertexRemap[vid];
if(softVertices[vid])
rawIdx-= softStart[0];
else
rawIdx+= softSize[0]-hardStart[0];
// for BlendShapes remapping
vertexFinalRemap[vid]= (0<<30) + rawIdx;
// fill raw struct
skinLod.Vertices1[rawIdx].MatrixId[0]= _SkinWeights[vid].MatrixId[0];
skinLod.Vertices1[rawIdx].Vertex.Pos= _OriginalSkinVertices[vid];
skinLod.Vertices1[rawIdx].Vertex.Normal= _OriginalSkinNormals[vid];
skinLod.Vertices1[rawIdx].Vertex.UV= *vba.getTexCoordPointer(vid);
}
// 2 Matrix skinning.
//========
for(i=0;i<skinLod.Vertices2.size();i++)
{
// get the dest vertex.
uint vid= lod.InfluencedVertices[1][i];
// where to store?
rawIdx= vertexRemap[vid];
if(softVertices[vid])
rawIdx-= softStart[1];
else
rawIdx+= softSize[1]-hardStart[1];
// for BlendShapes remapping
vertexFinalRemap[vid]= (1<<30) + rawIdx;
// fill raw struct
skinLod.Vertices2[rawIdx].MatrixId[0]= _SkinWeights[vid].MatrixId[0];
skinLod.Vertices2[rawIdx].MatrixId[1]= _SkinWeights[vid].MatrixId[1];
skinLod.Vertices2[rawIdx].Weights[0]= _SkinWeights[vid].Weights[0];
skinLod.Vertices2[rawIdx].Weights[1]= _SkinWeights[vid].Weights[1];
skinLod.Vertices2[rawIdx].Vertex.Pos= _OriginalSkinVertices[vid];
skinLod.Vertices2[rawIdx].Vertex.Normal= _OriginalSkinNormals[vid];
skinLod.Vertices2[rawIdx].Vertex.UV= *vba.getTexCoordPointer(vid);
}
// 3 Matrix skinning.
//========
for(i=0;i<skinLod.Vertices3.size();i++)
{
// get the dest vertex.
uint vid= lod.InfluencedVertices[2][i];
// where to store?
rawIdx= vertexRemap[vid];
if(softVertices[vid])
rawIdx-= softStart[2];
else
rawIdx+= softSize[2]-hardStart[2];
// for BlendShapes remapping
vertexFinalRemap[vid]= (2<<30) + rawIdx;
// fill raw struct
skinLod.Vertices3[rawIdx].MatrixId[0]= _SkinWeights[vid].MatrixId[0];
skinLod.Vertices3[rawIdx].MatrixId[1]= _SkinWeights[vid].MatrixId[1];
skinLod.Vertices3[rawIdx].MatrixId[2]= _SkinWeights[vid].MatrixId[2];
skinLod.Vertices3[rawIdx].Weights[0]= _SkinWeights[vid].Weights[0];
skinLod.Vertices3[rawIdx].Weights[1]= _SkinWeights[vid].Weights[1];
skinLod.Vertices3[rawIdx].Weights[2]= _SkinWeights[vid].Weights[2];
skinLod.Vertices3[rawIdx].Vertex.Pos= _OriginalSkinVertices[vid];
skinLod.Vertices3[rawIdx].Vertex.Normal= _OriginalSkinNormals[vid];
skinLod.Vertices3[rawIdx].Vertex.UV= *vba.getTexCoordPointer(vid);
}
// 4 Matrix skinning.
//========
for(i=0;i<skinLod.Vertices4.size();i++)
{
// get the dest vertex.
uint vid= lod.InfluencedVertices[3][i];
// where to store?
rawIdx= vertexRemap[vid];
if(softVertices[vid])
rawIdx-= softStart[3];
else
rawIdx+= softSize[3]-hardStart[3];
// for BlendShapes remapping
vertexFinalRemap[vid]= (3<<30) + rawIdx;
// fill raw struct
skinLod.Vertices4[rawIdx].MatrixId[0]= _SkinWeights[vid].MatrixId[0];
skinLod.Vertices4[rawIdx].MatrixId[1]= _SkinWeights[vid].MatrixId[1];
skinLod.Vertices4[rawIdx].MatrixId[2]= _SkinWeights[vid].MatrixId[2];
skinLod.Vertices4[rawIdx].MatrixId[3]= _SkinWeights[vid].MatrixId[3];
skinLod.Vertices4[rawIdx].Weights[0]= _SkinWeights[vid].Weights[0];
skinLod.Vertices4[rawIdx].Weights[1]= _SkinWeights[vid].Weights[1];
skinLod.Vertices4[rawIdx].Weights[2]= _SkinWeights[vid].Weights[2];
skinLod.Vertices4[rawIdx].Weights[3]= _SkinWeights[vid].Weights[3];
skinLod.Vertices4[rawIdx].Vertex.Pos= _OriginalSkinVertices[vid];
skinLod.Vertices4[rawIdx].Vertex.Normal= _OriginalSkinNormals[vid];
skinLod.Vertices4[rawIdx].Vertex.UV= *vba.getTexCoordPointer(vid);
}
// Remap Geomorphs.
//========
uint numGeoms= lod.Geomorphs.size();
skinLod.Geomorphs.resize( numGeoms );
for(i=0;i<numGeoms;i++)
{
// NB: don't add "numGeoms" to the index because RawSkin look in a TempArray in RAM, wich start at 0...
skinLod.Geomorphs[i].Start= vertexRemap[lod.Geomorphs[i].Start];
skinLod.Geomorphs[i].End= vertexRemap[lod.Geomorphs[i].End];
}
// Remap RdrPass.
//========
skinLod.RdrPass.resize(lod.RdrPass.size());
for(i=0;i<skinLod.RdrPass.size();i++)
{
// NB: since RawSkin is possible only with SkinGrouping, and since SkniGrouping is
// possible only with no Quads/Lines, we should have only Tris here.
// remap tris.
skinLod.RdrPass[i].setFormat(NL_DEFAULT_INDEX_BUFFER_FORMAT);
skinLod.RdrPass[i].setNumIndexes(lod.RdrPass[i].PBlock.getNumIndexes());
CIndexBufferRead ibaRead;
lod.RdrPass[i].PBlock.lock (ibaRead);
CIndexBufferReadWrite ibaWrite;
skinLod.RdrPass[i].lock (ibaWrite);
if (skinLod.RdrPass[i].getFormat() == CIndexBuffer::Indices32)
{
nlassert(ibaRead.getFormat() == CIndexBuffer::Indices32);
const uint32 *srcTriPtr= (const uint32 *) ibaRead.getPtr();
uint32 *dstTriPtr= (uint32 *) ibaWrite.getPtr();
uint32 numIndices= lod.RdrPass[i].PBlock.getNumIndexes();
for(uint j=0;j<numIndices;j++, srcTriPtr++, dstTriPtr++)
{
uint vid= *srcTriPtr;
// If this index refers to a Geomorphed vertex, don't modify!
if(vid<numGeoms)
*dstTriPtr= vid;
else
*dstTriPtr= vertexRemap[vid] + numGeoms;
}
}
else
{
nlassert(ibaRead.getFormat() == CIndexBuffer::Indices16);
const uint16 *srcTriPtr= (const uint16 *) ibaRead.getPtr();
uint16 *dstTriPtr= (uint16 *) ibaWrite.getPtr();
uint32 numIndices= lod.RdrPass[i].PBlock.getNumIndexes();
for(uint j=0;j<numIndices;j++, srcTriPtr++, dstTriPtr++)
{
uint vid= *srcTriPtr;
// If this index refers to a Geomorphed vertex, don't modify!
if(vid<numGeoms)
*dstTriPtr= vid;
else
*dstTriPtr= vertexRemap[vid] + numGeoms;
}
}
}
// Case of MeshMorpher
//========
if(_MeshMorpher.BlendShapes.size()>0)
{
skinLod.VertexRemap.resize(vertexFinalRemap.size());
for(i=0;i<vertexFinalRemap.size();i++)
{
uint vfr= vertexFinalRemap[i];
if(vfr!=0xFFFFFFFF)
{
uint rsArrayId= vfr >> 30;
uint rsIndex= vfr & ((1<<30)-1);
switch(rsArrayId)
{
case 0:
skinLod.VertexRemap[i]= &skinLod.Vertices1[rsIndex].Vertex;
break;
case 1:
skinLod.VertexRemap[i]= &skinLod.Vertices2[rsIndex].Vertex;
break;
case 2:
skinLod.VertexRemap[i]= &skinLod.Vertices3[rsIndex].Vertex;
break;
case 3:
skinLod.VertexRemap[i]= &skinLod.Vertices4[rsIndex].Vertex;
break;
};
}
else
skinLod.VertexRemap[i]= NULL;
}
}
}
}
}
// ***************************************************************************
// ***************************************************************************
// CMeshMRMGeom Shadow Skin Rendering
// ***************************************************************************
// ***************************************************************************
// ***************************************************************************
void CMeshMRMGeom::setShadowMesh(const std::vector<CShadowVertex> &shadowVertices, const std::vector<uint32> &triangles)
{
_ShadowSkin.Vertices= shadowVertices;
_ShadowSkin.Triangles= triangles;
// update flag. Support Shadow SkinGrouping if Shadow setuped, and if not too many vertices.
_SupportShadowSkinGrouping= !_ShadowSkin.Vertices.empty() &&
NL3D_SHADOW_MESH_SKIN_MANAGER_VERTEXFORMAT==CVertexBuffer::PositionFlag &&
_ShadowSkin.Vertices.size() <= NL3D_SHADOW_MESH_SKIN_MANAGER_MAXVERTICES;
}
// ***************************************************************************
uint CMeshMRMGeom::getNumShadowSkinVertices() const
{
return _ShadowSkin.Vertices.size();
}
// ***************************************************************************
sint CMeshMRMGeom::renderShadowSkinGeom(CMeshMRMInstance *mi, uint remainingVertices, uint8 *vbDest)
{
uint numVerts= _ShadowSkin.Vertices.size();
// if no verts, no draw
if(numVerts==0)
return 0;
// if no lods, there should be no verts, but still ensure no bug in skinning
if(_Lods.empty())
return 0;
// If the Lod is too big to render in the VBufferHard
if(numVerts>remainingVertices)
// return Failure
return -1;
// get the skeleton model to which I am skinned
CSkeletonModel *skeleton;
skeleton = mi->getSkeletonModel();
// must be skinned for renderSkin()
nlassert(skeleton);
// Profiling
//===========
H_AUTO_USE( NL3D_MeshMRMGeom_RenderShadow );
// Skinning.
//===========
// skinning with normal, but no tangent space
// For all matrix this Mesh use. (the shadow geometry cannot use other Matrix than the mesh use).
// NB: take the best lod since the lower lods cannot use other Matrix than the higher one.
static vector<CMatrix3x4> boneMat3x4;
CLod &lod= _Lods[_Lods.size()-1];
computeBoneMatrixes3x4(boneMat3x4, lod.MatrixInfluences, skeleton);
_ShadowSkin.applySkin((CVector*)vbDest, boneMat3x4);
// How many vertices are added to the VBuffer ???
return numVerts;
}
// ***************************************************************************
void CMeshMRMGeom::renderShadowSkinPrimitives(CMeshMRMInstance *mi, CMaterial &castMat, IDriver *drv, uint baseVertex)
{
nlassert(drv);
if(_ShadowSkin.Triangles.empty())
return;
// Profiling
//===========
H_AUTO_USE( NL3D_MeshMRMGeom_RenderShadow );
// NB: the skeleton matrix has already been setuped by CSkeletonModel
// NB: the normalize flag has already been setuped by CSkeletonModel
// TODO_SHADOW: optim: Special triangle cache for shadow!
static CIndexBuffer shiftedTris;
NL_SET_IB_NAME(shiftedTris, "CMeshMRMGeom::renderShadowSkinPrimitives::shiftedTris");
if(shiftedTris.getNumIndexes()<_ShadowSkin.Triangles.size())
{
shiftedTris.setFormat(NL_MESH_MRM_INDEX_FORMAT);
shiftedTris.setNumIndexes(_ShadowSkin.Triangles.size());
}
shiftedTris.setPreferredMemory(CIndexBuffer::RAMVolatile, false);
{
CIndexBufferReadWrite iba;
shiftedTris.lock(iba);
const uint32 *src= &_ShadowSkin.Triangles[0];
TMeshMRMIndexType *dst= (TMeshMRMIndexType *) iba.getPtr();
for(uint n= _ShadowSkin.Triangles.size();n>0;n--, src++, dst++)
{
*dst= (TMeshMRMIndexType)(*src + baseVertex);
}
}
// Render Triangles with cache
//===========
uint numTris= _ShadowSkin.Triangles.size()/3;
// Render with the Materials of the MeshInstance.
drv->activeIndexBuffer(shiftedTris);
drv->renderTriangles(castMat, 0, numTris);
}
// ***************************************************************************
bool CMeshMRMGeom::getSkinBoneBBox(CSkeletonModel *skeleton, NLMISC::CAABBox &bbox, uint boneId) const
{
bbox.setCenter(CVector::Null);
bbox.setHalfSize(CVector::Null);
if(!skeleton)
return false;
// get the bindpos of the wanted bone
nlassert(boneId<skeleton->Bones.size());
const CMatrix &invBindPos= skeleton->Bones[boneId].getBoneBase().InvBindPos;
// Find the Geomorph space: to process only real vertices, not geomorphed ones.
uint nGeomSpace= 0;
uint lod;
for (lod=0; lod<_Lods.size(); lod++)
{
nGeomSpace= max(nGeomSpace, (uint)_Lods[lod].Geomorphs.size());
}
// Prepare Sphere compute
nlassert(_OriginalSkinVertices.size() == _SkinWeights.size());
bool bbEmpty= true;
// Remap the vertex, and compute the wanted bone bbox
// for true vertices
for (uint vert=nGeomSpace; vert<_SkinWeights.size(); vert++)
{
// get the vertex position.
CVector vertex= _OriginalSkinVertices[vert];
// For each weight
uint weight;
for (weight=0; weight<NL3D_MESH_SKINNING_MAX_MATRIX; weight++)
{
// Active ?
if ((_SkinWeights[vert].Weights[weight]>0)||(weight==0))
{
// Check id is the wanted one
if(_SkinWeights[vert].MatrixId[weight]==boneId)
{
// transform the vertex pos in BoneSpace
CVector p= invBindPos * vertex;
// extend the bone bbox.
if(bbEmpty)
{
bbox.setCenter(p);
bbEmpty= false;
}
else
{
bbox.extend(p);
}
}
}
else
break;
}
}
// return true if some influence found
return !bbEmpty;
}
// ***************************************************************************
bool CMeshMRMGeom::intersectSkin(CMeshMRMInstance *mi, const CMatrix &toRaySpace, float &dist2D, float &distZ, bool computeDist2D)
{
// for MeshMRM, Use the Shadow Skinning (simple and light version).
// no inst/verts/lod => no intersection
if(!mi || _ShadowSkin.Vertices.empty() || _Lods.empty())
return false;
CSkeletonModel *skeleton= mi->getSkeletonModel();
if(!skeleton)
return false;
// Compute skinning with all matrix this Mesh use. (the shadow geometry cannot use other Matrix than the mesh use).
// NB: take the best lod (_Lods.back()) since the lower lods cannot use other Matrix than the higher one.
return _ShadowSkin.getRayIntersection(toRaySpace, *skeleton, _Lods.back().MatrixInfluences, dist2D, distZ, computeDist2D);
}
} // NL3D