khanat-code-old/code/ryzom/server/src/ai_share/world_map.cpp
2015-12-15 15:05:31 +01:00

2337 lines
56 KiB
C++

// Ryzom - MMORPG Framework <http://dev.ryzom.com/projects/ryzom/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "stdpch.h"
#include "game_share/utils.h"
#include "world_map.h"
//extern bool simulateBug(int bugId);
using namespace std;
using namespace NLMISC;
namespace RYAI_MAP_CRUNCH
{
NL_BEGIN_STRING_CONVERSION_TABLE (TAStarFlag)
NL_STRING_CONVERSION_TABLE_ENTRY(Nothing)
NL_STRING_CONVERSION_TABLE_ENTRY(Interior)
NL_STRING_CONVERSION_TABLE_ENTRY(Water)
NL_STRING_CONVERSION_TABLE_ENTRY(NoGo)
NL_STRING_CONVERSION_TABLE_ENTRY(WaterAndNogo)
NL_STRING_CONVERSION_TABLE_ENTRY(GroundFlags)
NL_END_STRING_CONVERSION_TABLE(TAStarFlag, AStarFlagConversion, Nothing)
const std::string& toString(TAStarFlag flag)
{
return AStarFlagConversion.toString(flag);
}
TAStarFlag toAStarFlag(const std::string& str)
{
return AStarFlagConversion.fromString(str);
}
//////////////////////////////////////////////////////////////////////////////
// Helper classes and data //
//////////////////////////////////////////////////////////////////////////////
const struct CDirection::CDirectionData CDirection::directionDatas[] =
{
{ +1, 0, ORTHO_COST},
{ +1, +1, DIAG_COST},
{ 0, +1, ORTHO_COST},
{ -1, +1, DIAG_COST},
{ -1, 0, ORTHO_COST},
{ -1, -1, DIAG_COST},
{ 0, -1, ORTHO_COST},
{ +1, -1, DIAG_COST},
{ 0, 0, NO_COST}
};
// Enum vals ..
// 5 6 7
// 4 8 0
// 3 2 1
const CDirection::TDirection CDirection::table[] =
{
CDirection::SW, CDirection::S, CDirection::SE,
CDirection::W, CDirection::UNDEFINED, CDirection::E,
CDirection::NW, CDirection::N, CDirection::NE
};
//////////////////////////////////////////////////////////////////////////////
// //
//////////////////////////////////////////////////////////////////////////////
class CABaseStarNode
{
public:
CABaseStarNode(uint father, float distance, bool open);
void setOpen(bool open) { _Open = open; }
bool isOpened() const { return _Open; }
float getDistance() const { return _Distance; }
uint getFather() const { return _Father; }
private:
uint _Father; ///< Parent node in the path from the start position
float _Distance;
bool _Open; ///< Is the node in the OPEN or CLOSED set?
};
inline
CABaseStarNode::CABaseStarNode(uint father, float distance, bool open)
: _Father(father)
, _Distance(distance)
, _Open(open)
{
}
//////////////////////////////////////////////////////////////////////////////
// CAStarHeapNode //
//////////////////////////////////////////////////////////////////////////////
class CAStarHeapNode : public CABaseStarNode
{
public:
explicit CAStarHeapNode(CTopology::TTopologyRef Ref, uint Father, float Distance, bool Open);
CTopology::TTopologyRef const& getRef() const { return _Ref; }
private:
CTopology::TTopologyRef _Ref;
};
inline
CAStarHeapNode::CAStarHeapNode(CTopology::TTopologyRef Ref, uint Father, float Distance, bool Open)
: CABaseStarNode(Father, Distance, Open)
, _Ref(Ref)
{
}
//////////////////////////////////////////////////////////////////////////////
// CAStarNode //
//////////////////////////////////////////////////////////////////////////////
class CAStarNode
{
public:
CAStarNode() { }
explicit CAStarNode(CWorldPosition const& pos) :
_x(pos.xCoord().getUnitId()) , _y(pos.yCoord().getUnitId()), _slot(pos.slot())
{ }
CAStarNode(const CAStarNode & other) :
_x(other._x), _y(other._y), _slot(other._slot)
{ }
void updateMapPosition(CMapPosition& _mapPos) const;
bool operator==(CAStarNode const& other) const;
bool operator!=(CAStarNode const& other) const;
bool operator<(CAStarNode const& other) const;
CSlot const& slot() const { return _slot; }
private:
uint8 _x;
uint8 _y;
CSlot _slot;
};
inline
void CAStarNode::updateMapPosition(CMapPosition& _mapPos) const
{
_mapPos.setUnitId(_x, _y);
}
inline
bool CAStarNode::operator==(CAStarNode const& other) const
{
return _x==other._x && _y==other._y && _slot==other._slot;
}
inline
bool CAStarNode::operator!=(CAStarNode const& other) const
{
return _x!=other._x || _y!=other._y || _slot!=other._slot;
}
inline
bool CAStarNode::operator<(CAStarNode const& other) const
{
if (_x!=other._x)
return _x<other._x;
if (_y!=other._y)
return _y<other._y;
return _slot<other._slot;
}
//////////////////////////////////////////////////////////////////////////////
// //
//////////////////////////////////////////////////////////////////////////////
class CInsideAStarHeapNode : public CABaseStarNode
{
public:
friend class CAStarNode;
explicit CInsideAStarHeapNode(const CAStarNode &node, uint Father, CDirection Direction, float Distance, bool Open) : CABaseStarNode(Father,Distance,Open), _Direction(Direction), _Node(node)
{
}
inline const CDirection &getDirection() const
{
return _Direction;
}
inline const CAStarNode &getNode() const
{
return _Node;
}
private:
CDirection _Direction;
CAStarNode _Node;
};
//////////////////////////////////////////////////////////////////////////////
// CDirectionLayer //
//////////////////////////////////////////////////////////////////////////////
void CDirectionLayer::serial(NLMISC::IStream& f)
{
uint i, j;
for (i=0; i<3; ++i)
{
for (j=0; j<3; ++j)
{
if (f.isReading())
{
delete Grid[i][j];
Grid[i][j] = NULL;
}
bool present = (Grid[i][j] != NULL);
f.serial(present);
if (present)
{
if (f.isReading())
Grid[i][j] = I16x16Layer::load(f);
else
I16x16Layer::save(f, Grid[i][j]);
}
}
}
}
//////////////////////////////////////////////////////////////////////////////
// CDirectionMap //
//////////////////////////////////////////////////////////////////////////////
void CDirectionMap::serial(NLMISC::IStream& f)
{
uint i;
for (i=0; i<3; ++i)
{
if (f.isReading())
{
delete Layers[i];
Layers[i] = NULL;
}
bool present = (Layers[i] != NULL);
f.serial(present);
if (present)
{
if (f.isReading())
Layers[i] = new CDirectionLayer();
f.serial(*Layers[i]);
}
}
}
//////////////////////////////////////////////////////////////////////////////
// CRootCell //
//////////////////////////////////////////////////////////////////////////////
CRootCell* CRootCell::load(NLMISC::IStream& f, CWorldMap const& worldMap)
{
TCellType type = Compute;
CRootCell *result = NULL;
f.serialEnum(type);
switch (type)
{
case Compute:
result = new CComputeCell(worldMap);
static_cast<CComputeCell*>(result)->serial(f);
break;
case White:
result = new CWhiteCell(worldMap);
static_cast<CWhiteCell*>(result)->serial(f);
break;
case SingleLayer:
result = new CSingleLayerCell(worldMap);
static_cast<CSingleLayerCell*>(result)->serial(f);
break;
case MultiLayer:
result = new CMultiLayerCell(worldMap);
static_cast<CMultiLayerCell*>(result)->serial(f);
break;
default:
nlassert(false);
nlwarning("Unknown type of cell %d to load, abort", type);
return result;
break;
}
// allow us to optimize access.
f.serialCont(result->_TopologiesNodes);
return result;
}
void CRootCell::save(NLMISC::IStream& f, CRootCell* cell)
{
if (dynamic_cast<CComputeCell*>(cell) != NULL)
{
TCellType type = Compute;
f.serialEnum(type);
static_cast<CComputeCell*>(cell)->serial(f);
}
else if (dynamic_cast<CWhiteCell*>(cell) != NULL)
{
TCellType type = White;
f.serialEnum(type);
static_cast<CWhiteCell*>(cell)->serial(f);
}
else if (dynamic_cast<CSingleLayerCell*>(cell) != NULL)
{
TCellType type = SingleLayer;
f.serialEnum(type);
static_cast<CSingleLayerCell*>(cell)->serial(f);
}
else if (dynamic_cast<CMultiLayerCell*>(cell) != NULL)
{
TCellType type = MultiLayer;
f.serialEnum(type);
static_cast<CMultiLayerCell*>(cell)->serial(f);
}
else
{
nlassert(false);
nlwarning("Unknown type of cell to save, abort");
return;
}
f.serialCont(cell->_TopologiesNodes);
}
//////////////////////////////////////////////////////////////////////////////
// CComputeCell //
//////////////////////////////////////////////////////////////////////////////
void CComputeCell::serial(NLMISC::IStream& f)
{
// Version
// 0: initial version
uint version = f.serialVersion(0);
for (uint32 i=0; i<16*16; ++i)
for (uint32 k=0; k<3; ++k)
f.serial(_Grid[i][k]);
}
//////////////////////////////////////////////////////////////////////////////
// CSingleLayerCell //
//////////////////////////////////////////////////////////////////////////////
bool CSingleLayerCell::_Initialized = false;
uint16 CSingleLayerCell::_MaskMap[16];
void CSingleLayerCell::serial(NLMISC::IStream& f)
{
f.serialCheck(NELID16("SL"));
uint i;
for (i=0; i<16; ++i)
f.serial(_Map[i]);
f.serial(_SLinks);
f.serial(_NLinks);
f.serial(_ELinks);
f.serial(_WLinks);
if (f.isReading())
{
delete _Topologies;
delete _HeightMap;
_Topologies = I16x16Layer::load(f);
_HeightMap = I16x16Layer::load(f);
}
else
{
I16x16Layer::save(f, _Topologies);
I16x16Layer::save(f, _HeightMap);
}
}
//////////////////////////////////////////////////////////////////////////////
// CMultiLayerCell //
//////////////////////////////////////////////////////////////////////////////
void CMultiLayerCell::serial(NLMISC::IStream& f)
{
f.serialCheck(NELID16("ML"));
uint slot;
for (slot=0; slot<3; ++slot)
{
// delete layer if any previously
if (f.isReading())
{
if (_Layers[slot] != NULL)
delete _Layers[slot]->_HeightMap;
delete _Layers[slot];
_Layers[slot] = NULL;
}
bool present = (_Layers[slot] != NULL);
f.serial(present);
if (present)
{
if (f.isReading())
{
_Layers[slot] = new CCellLayer();
_Layers[slot]->_HeightMap = I16x16Layer::load(f);
}
else
{
I16x16Layer::save(f, _Layers[slot]->_HeightMap);
}
nlassert(_Layers[slot] != NULL);
for (uint32 i=0; i<16*16; ++i)
{
f.serial(_Layers[slot]->_Layer[i]);
f.serial(_Layers[slot]->_Topology[i]);
}
}
}
}
//////////////////////////////////////////////////////////////////////////////
// CSuperCell //
//////////////////////////////////////////////////////////////////////////////
void CSuperCell::serial(NLMISC::IStream& f)
{
// Version
// 0: initial version
uint version = f.serialVersion(0);
if (f.isReading())
{
for (uint32 i=0; i<16*16; ++i)
{
bool present;
f.serial(present);
if (_Grid[i] != NULL)
delete _Grid[i];
if (present)
_Grid[i] = CRootCell::load(f,_WorldMap);
}
}
else
{
for (uint32 i=0; i<16*16; ++i)
{
bool present = (_Grid[i] != NULL);
f.serial(present);
if (present)
CRootCell::save(f, _Grid[i]);
}
}
}
void CSuperCell::updateTopologyRef(CWorldMap* worldMap)
{
for (uint32 i=0; i<16*16; ++i)
{
if (_Grid[i])
_Grid[i]->updateTopologyRef (worldMap);
}
}
void CSuperCell::countCells(uint& compute, uint& white, uint& simple, uint& multi, uint& other) const
{
for (uint32 i=0; i<16*16; ++i)
{
if (!_Grid[i])
continue;
if (dynamic_cast<const CWhiteCell*>(_Grid[i]) != NULL)
++white;
else if (dynamic_cast<const CSingleLayerCell*>(_Grid[i]) != NULL)
++simple;
else if (dynamic_cast<const CComputeCell*>(_Grid[i]) != NULL)
++compute;
else if (dynamic_cast<const CMultiLayerCell*>(_Grid[i]) != NULL)
++multi;
else
++other;
}
}
//////////////////////////////////////////////////////////////////////////////
// CWorldMap //
//////////////////////////////////////////////////////////////////////////////
void CWorldMap::getBounds(CMapPosition& min, CMapPosition& max)
{
uint i, j;
uint mini = 256, maxi = 0, minj = 256, maxj = 0;
for (i=0; i<256; ++i)
{
for (j=0; j<256; ++j)
{
if (_GridFastAccess[i*256+j])
{
if (i < mini) mini = i;
if (i > maxi) maxi = i;
if (j < minj) minj = j;
if (j > maxj) maxj = j;
}
}
}
min = CMapPosition(CMapCoord(minj, 0, 0), CMapCoord(mini, 0, 0) );
max = CMapPosition(CMapCoord(maxj+1, 0, 0), CMapCoord(maxi+1, 0, 0) );
}
void CWorldMap::clear()
{
for (uint i=0;i<65536;i++)
{
if (_GridFastAccess[i])
{
delete _GridFastAccess[i];
_GridFastAccess[i]=NULL;
}
}
}
void CWorldMap::serial(NLMISC::IStream &f)
{
f.serialCheck(NELID("WMAP"));
// Version
// 0: initial version
uint version = f.serialVersion(0);
if (f.isReading())
{
uint32 i;
for (i=0;i<65536;i++)
{
bool present;
f.serial(present);
if (present)
{
CSuperCell *scell = _GridFastAccess[i];
if (!scell)
_GridFastAccess[i] = scell =new CSuperCell(*this);
f.serial(*scell);
}
}
// made to update RootCell pointers in TTopologyRef ..
for (i=0;i<65536;i++)
{
CSuperCell *scell = _GridFastAccess[i];
if (scell)
scell->updateTopologyRef (this);
}
// made to calculate some random pos ..
{
CMapPosition min, max;
getBounds(min, max);
CMapPosition scan, scanline;
NLMISC::CRandom random;
for (scan = min; scan.y() != max.y(); scan = scan.stepCell(0, 1))
{
for (scanline = scan; scanline.x() != max.x(); scanline = scanline.stepCell(1, 0))
{
CRootCell *rootCell=getRootCell(scanline);
if (!rootCell)
continue;
CMapPosition pos(scanline.x(),0xffff0000|scanline.y());
uint ind=0;
uint maxTries=256;
for (;ind<4 && maxTries>0;maxTries--)
{
CWorldPosition wpos;
uint i= uint32(random.rand()) & 0xf;
uint j= uint32(random.rand()) & 0xf;
#ifdef NL_DEBUG
nlassert(i<16 && j<16);
#endif
pos.setUnitId(i,j);
CAIVector vecPos=CAIVector(pos);
if (setWorldPosition (AITYPES::vp_auto, wpos, vecPos))
{
#ifdef NL_DEBUG
nlassert(wpos.getRootCell()==rootCell);
nlassert(wpos.y()<=0 && wpos.x()>=0);
#endif
rootCell->setWorldPosition(wpos, ind);
ind++;
}
}
// if we have found some valid positions but not all, fill the array with the last pos found.
if (ind<4 && ind>0)
{
while (ind<4)
{
rootCell->setWorldPosition(rootCell->getWorldPosition(ind-1), ind);
ind++;
}
}
}
}
}
}
else
{
for (uint32 i=0;i<65536;i++)
{
bool present = (_GridFastAccess[i]!=NULL);
f.serial(present);
if (present)
{
//nldebug("Save SuperCell %d/%d", i, j);
f.serial(*(_GridFastAccess[i]));
}
}
}
}
void CWorldMap::setFlagOnPosAndRadius(const CMapPosition &pos,float radius, uint32 flag)
{
float minx=pos.x()-radius;
float maxx=pos.x()+radius;
float miny=pos.y()-radius;
float maxy=pos.y()+radius;
const float radius2=radius*radius;
for (float ty=miny;ty<=maxy;ty++)
{
const float dy=ty-pos.y();
for (float tx=minx;tx<=maxx;tx++)
{
const float dx=tx-pos.x();
if ((dy*dy+dx*dx)>radius2)
continue;
CRootCell *rootCell=getRootCell(CMapPosition((int)tx,(int)ty));
if (!rootCell)
continue;
rootCell->setFlag(flag);
}
}
}
void CWorldMap::countCells(uint &compute, uint &white, uint &simple, uint &multi, uint &other) const
{
for (uint32 i=0; i<65536; ++i)
{
if (_GridFastAccess[i])
_GridFastAccess[i]->countCells(compute, white, simple, multi, other);
}
// uint i, j;
// for (i=0; i<256; ++i)
// for (j=0; j<256; ++j)
// if (_Grid[i][j] != NULL)
// _Grid[i][j]->countCells(compute, white, simple, multi, other);
}
//
CNeighbourhood CWorldMap::neighbours(const CWorldPosition &wpos) const
{
CNeighbourhood neighbs;
const CCellLinkage lnks=wpos.getCellLinkage();
if (lnks.isSSlotValid())
{
neighbs.set(CDirection::S);
const CCellLinkage &nlnk = wpos.getPosS().getCellLinkage(); //CWorldPosition(wpos.getPosS(),lnks.NSlot()));
if (nlnk.isESlotValid())
neighbs.set(CDirection::SE);
if (nlnk.isWSlotValid())
neighbs.set(CDirection::SW);
}
if (lnks.isNSlotValid())
{
neighbs.set(CDirection::N);
const CCellLinkage &slnk = wpos.getPosN().getCellLinkage();
if (slnk.isESlotValid())
neighbs.set(CDirection::NE);
if (slnk.isWSlotValid())
neighbs.set(CDirection::NW);
}
if (lnks.isESlotValid())
{
neighbs.set(CDirection::E);
const CCellLinkage &elnk = wpos.getPosE().getCellLinkage();
if (elnk.isSSlotValid())
neighbs.set(CDirection::SE);
if (elnk.isNSlotValid())
neighbs.set(CDirection::NE);
}
if (lnks.isWSlotValid())
{
neighbs.set(CDirection::W);
const CCellLinkage &wlnk = wpos.getPosW().getCellLinkage();
if (wlnk.isSSlotValid())
neighbs.set(CDirection::SW);
if (wlnk.isNSlotValid())
neighbs.set(CDirection::NW);
}
return neighbs;
}
//
bool CWorldMap::customCheckDiagMove(const CWorldPosition &pos, const CDirection &direction, TAStarFlag denyFlags) const
{
H_AUTO(AI_WorldMap_move);
// get straight links
const CCellLinkage &lnk = pos.getCellLinkage();
switch (direction.getVal())
{
case CDirection::SE:
{
{
CWorldPosition tmpPos(pos);
if (!tmpPos.getCellLinkage().isSSlotValid())
return false;
tmpPos=tmpPos.getPosS();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
if (!tmpPos.getCellLinkage().isESlotValid())
return false;
tmpPos=tmpPos.getPosE();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
}
{
CWorldPosition tmpPos(pos);
if (!tmpPos.getCellLinkage().isESlotValid())
return false;
tmpPos=tmpPos.getPosE();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
if (!tmpPos.getCellLinkage().isSSlotValid())
return false;
// tmpPos=tmpPos.getPosS();
// if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
// return false;
}
return true;
}
case CDirection::NE:
{
{
CWorldPosition tmpPos(pos);
if (!tmpPos.getCellLinkage().isNSlotValid())
return false;
tmpPos=tmpPos.getPosN();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
if (!tmpPos.getCellLinkage().isESlotValid())
return false;
tmpPos=tmpPos.getPosE();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
}
{
CWorldPosition tmpPos(pos);
if (!tmpPos.getCellLinkage().isESlotValid())
return false;
tmpPos=tmpPos.getPosE();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
if (!tmpPos.getCellLinkage().isNSlotValid())
return false;
// tmpPos=tmpPos.getPosN();
// if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
// return false;
}
return true;
}
case CDirection::NW:
{
{
CWorldPosition tmpPos(pos);
if (!tmpPos.getCellLinkage().isNSlotValid())
return false;
tmpPos=tmpPos.getPosN();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
if (!tmpPos.getCellLinkage().isWSlotValid())
return false;
tmpPos=tmpPos.getPosW();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
}
{
CWorldPosition tmpPos(pos);
if (!tmpPos.getCellLinkage().isWSlotValid())
return false;
tmpPos=tmpPos.getPosW();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
if (!tmpPos.getCellLinkage().isNSlotValid())
return false;
// tmpPos=tmpPos.getPosN();
// if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
// return false;
}
return true;
}
case CDirection::SW:
{
{
CWorldPosition tmpPos(pos);
if (!tmpPos.getCellLinkage().isSSlotValid())
return false;
tmpPos=tmpPos.getPosS();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
if (!tmpPos.getCellLinkage().isWSlotValid())
return false;
tmpPos=tmpPos.getPosW();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
}
{
CWorldPosition tmpPos(pos);
if (!tmpPos.getCellLinkage().isWSlotValid())
return false;
tmpPos=tmpPos.getPosW();
if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
return false;
if (!tmpPos.getCellLinkage().isSSlotValid())
return false;
// tmpPos=tmpPos.getPosS();
// if ((tmpPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0)
// return false;
}
return true;
}
break;
default:
break;
}
return false;
}
/*
bool CWorldMap::customCheckDiagMove(const CWorldPosition &pos, const CDirection &direction, TAStarFlag denyFlags) const
{
H_AUTO(AI_WorldMap_move);
// get straight links
const CCellLinkage &lnk = pos.getCellLinkage();
switch (direction.getVal())
{
case CDirection::SE:
{
if (!lnk.isSSlotValid())
return false;
if (!lnk.isESlotValid())
return false;
return ( pos.getPosS().getCellLinkage().isESlotValid()
|| pos.getPosE().getCellLinkage().isSSlotValid());
}
case CDirection::NE:
{
if (!lnk.isNSlotValid())
return false;
if (!lnk.isESlotValid())
return false;
return ( pos.getPosN().getCellLinkage().isESlotValid()
|| pos.getPosE().getCellLinkage().isNSlotValid());
}
case CDirection::NW:
{
if (!lnk.isNSlotValid())
return false;
if (!lnk.isWSlotValid())
return false;
return ( pos.getPosN().getCellLinkage().isWSlotValid()
|| pos.getPosW().getCellLinkage().isNSlotValid());
}
case CDirection::SW:
{
if (!lnk.isSSlotValid())
return false;
if (!lnk.isWSlotValid())
return false;
return ( pos.getPosS().getCellLinkage().isWSlotValid()
|| pos.getPosW().getCellLinkage().isSSlotValid());
}
}
return false;
}
*/
//
bool CWorldMap::move(CWorldPosition &pos, const CDirection &direction) const
{
H_AUTO(AI_WorldMap_move);
// get straight links
const CCellLinkage &lnk = pos.getCellLinkage();
switch (direction.getVal())
{
case CDirection::S:
{
if (lnk.isSSlotValid())
{
pos.stepS();
return true;
}
return false;
}
case CDirection::SE:
{
if (lnk.isSSlotValid())
{
const CWorldPosition temp(pos.getPosS());
if (temp.getCellLinkage().isESlotValid())
{
temp.setPosE(pos);
return true;
}
}
if (lnk.isESlotValid())
{
const CWorldPosition temp(pos.getPosE());
if (temp.getCellLinkage().isSSlotValid())
{
temp.setPosS(pos);
return true;
}
}
return false;
}
case CDirection::E:
{
if (lnk.isESlotValid())
{
pos.stepE();
return true;
}
return false;
}
case CDirection::NE:
{
if (lnk.isESlotValid())
{
const CWorldPosition temp(pos.getPosE());
if (temp.getCellLinkage().isNSlotValid())
{
temp.setPosN(pos);
return true;
}
}
if (lnk.isNSlotValid())
{
const CWorldPosition temp(pos.getPosN());
if (temp.getCellLinkage().isESlotValid())
{
temp.setPosE(pos);
return true;
}
}
return false;
}
case CDirection::N:
{
if (lnk.isNSlotValid())
{
pos.stepN();
return true;
}
return false;
}
case CDirection::NW:
{
if (lnk.isWSlotValid())
{
const CWorldPosition temp(pos.getPosW());
if (temp.getCellLinkage().isNSlotValid())
{
temp.setPosN(pos);
return true;
}
}
if (lnk.isNSlotValid())
{
const CWorldPosition temp(pos.getPosN());
if (temp.getCellLinkage().isWSlotValid())
{
temp.setPosW(pos);
return true;
}
}
return false;
}
case CDirection::W:
{
if (lnk.isWSlotValid())
{
pos.stepW();
return true;
}
return false;
}
case CDirection::SW:
{
if (lnk.isSSlotValid())
{
const CWorldPosition temp(pos.getPosS());
if (temp.getCellLinkage().isWSlotValid())
{
temp.setPosW(pos);
return true;
}
}
if (lnk.isWSlotValid())
{
const CWorldPosition temp(pos.getPosW());
if (temp.getCellLinkage().isSSlotValid())
{
temp.setPosS(pos);
return true;
}
}
return false;
}
default:
break;
}
return false;
}
//
bool CWorldMap::moveSecure(CWorldPosition &pos, const CDirection &direction, uint16 maskFlags) const
{
H_AUTO(AI_WorldMap_moveSecure);
// get straight links
uint16 pflags = pos.getFlags();
switch (direction.getVal())
{
case CDirection::S:
{
return pos.moveS();
}
case CDirection::SE:
{
CWorldPosition p1(pos), p2(pos);
if (p1.moveS() && (((p1.getFlags()^pflags)&maskFlags) == 0) && p1.moveE() && (((p1.getFlags()^pflags)&maskFlags) == 0) &&
p2.moveE() && (((p2.getFlags()^pflags)&maskFlags) == 0) && p2.moveS() && (((p2.getFlags()^pflags)&maskFlags) == 0) &&
p1 == p2)
{
pos = p1;
return true;
}
break;
}
case CDirection::E:
{
return pos.moveE();
}
case CDirection::NE:
{
CWorldPosition p1(pos), p2(pos);
if (p1.moveN() && (((p1.getFlags()^pflags)&maskFlags) == 0) && p1.moveE() && (((p1.getFlags()^pflags)&maskFlags) == 0) &&
p2.moveE() && (((p2.getFlags()^pflags)&maskFlags) == 0) && p2.moveN() && (((p2.getFlags()^pflags)&maskFlags) == 0) &&
p1 == p2)
{
pos = p1;
return true;
}
break;
}
case CDirection::N:
{
return pos.moveN();
}
case CDirection::NW:
{
CWorldPosition p1(pos), p2(pos);
if (p1.moveN() && (((p1.getFlags()^pflags)&maskFlags) == 0) && p1.moveW() && (((p1.getFlags()^pflags)&maskFlags) == 0) &&
p2.moveW() && (((p2.getFlags()^pflags)&maskFlags) == 0) && p2.moveN() && (((p2.getFlags()^pflags)&maskFlags) == 0) &&
p1 == p2)
{
pos = p1;
return true;
}
break;
}
case CDirection::W:
{
return pos.moveW();
}
case CDirection::SW:
{
CWorldPosition p1(pos), p2(pos);
if (p1.moveS() && (((p1.getFlags()^pflags)&maskFlags) == 0) && p1.moveW() && (((p1.getFlags()^pflags)&maskFlags) == 0) &&
p2.moveW() && (((p2.getFlags()^pflags)&maskFlags) == 0) && p2.moveS() && (((p2.getFlags()^pflags)&maskFlags) == 0) &&
p1 == p2)
{
pos = p1;
return true;
}
break;
}
default:
break;
}
return false;
}
//
bool CWorldMap::moveDiagTestBothSide(CWorldPosition &pos, const CDirection &direction) const
{
H_AUTO(AI_WorldMap_move);
// get straight links
const CCellLinkage &lnk = pos.getCellLinkage();
switch (direction.getVal())
{
case CDirection::S:
{
if (lnk.isSSlotValid())
{
pos.stepS();
return true;
}
return false;
}
case CDirection::SE:
{
if (!lnk.isSSlotValid() || !lnk.isESlotValid())
return false;
CSlot eSlot=pos.getPosS().getCellLinkage().ESlot();
if (!eSlot.isValid())
return false;
const CWorldPosition temp(pos.getPosE());
if (temp.getCellLinkage().SSlot()!=eSlot)
return false;
temp.setPosS(pos);
return true;
}
case CDirection::E:
{
if (lnk.isESlotValid())
{
pos.stepE();
return true;
}
return false;
}
case CDirection::NE:
{
if (!lnk.isNSlotValid() || !lnk.isESlotValid())
return false;
CSlot eSlot=pos.getPosN().getCellLinkage().ESlot();
if (!eSlot.isValid())
return false;
const CWorldPosition temp(pos.getPosE());
if (temp.getCellLinkage().NSlot()!=eSlot)
return false;
temp.setPosN(pos);
return true;
}
case CDirection::N:
{
if (lnk.isNSlotValid())
{
pos.stepN();
return true;
}
return false;
}
case CDirection::NW:
{
if (!lnk.isNSlotValid() || !lnk.isWSlotValid())
return false;
CSlot wSlot=pos.getPosN().getCellLinkage().WSlot();
if (!wSlot.isValid())
return false;
const CWorldPosition temp(pos.getPosW());
if (temp.getCellLinkage().NSlot()!=wSlot)
return false;
temp.setPosN(pos);
return true;
}
case CDirection::W:
{
if (lnk.isWSlotValid())
{
pos.stepW();
return true;
}
return false;
}
case CDirection::SW:
{
if (!lnk.isSSlotValid() || !lnk.isWSlotValid())
return false;
CSlot wSlot=pos.getPosS().getCellLinkage().WSlot();
if (!wSlot.isValid())
return false;
const CWorldPosition temp(pos.getPosW());
if (temp.getCellLinkage().SSlot()!=wSlot)
return false;
temp.setPosS(pos);
return true;
}
default:
break;
}
return false;
}
void areCompatiblesWithoutStartRestriction(const CWorldPosition &startPos, const CWorldPosition& endPos, const TAStarFlag &denyflags, CCompatibleResult &res, bool allowStartRestriction)
{
res.setValid(false);
if (&startPos == NULL)
{
nlwarning("Invalid startPos (NULL)");
return;
}
if (&endPos == NULL)
{
nlwarning("Invalid endPos (NULL)");
return;
}
const CTopology &startTopoNode=startPos.getTopologyRef().getCstTopologyNode();
const CTopology &endTopoNode=endPos.getTopologyRef().getCstTopologyNode();
TAStarFlag startFlag=(TAStarFlag)(startTopoNode.getFlags()&WaterAndNogo);
// if (!allowStartRestriction)
startFlag=Nothing;
for (TAStarFlag possibleFlag=Nothing;possibleFlag<=WaterAndNogo;possibleFlag=(TAStarFlag)(possibleFlag+2)) // tricky !! -> to replace with a defined list of flags to checks.
{
const uint32 incompatibilityFlags=(possibleFlag&(denyflags&~startFlag))&WaterAndNogo;
if (incompatibilityFlags)
continue;
const uint32 startMasterTopo=startTopoNode.getMasterTopo(possibleFlag);
const uint32 endMasterTopo=endTopoNode.getMasterTopo(possibleFlag);
if ( (startMasterTopo^endMasterTopo)!=0
|| startMasterTopo == std::numeric_limits<uint32>::max()) // if not same masterTopo or invalid masterTopo then bypass ..
continue;
res.set(possibleFlag, startMasterTopo);
res.setValid();
if (((possibleFlag&denyflags)&WaterAndNogo)==0) // it was the optimal case ?
break;
}
}
//////////////////////////////////////////////////////////////////////////////
// Path finding //
//////////////////////////////////////////////////////////////////////////////
//#define CHECK_HEAP
std::map<uint, uint> MapAStarNbSteps;
uint LastAStarNbSteps = 0;
NLMISC_CATEGORISED_COMMAND(ais, dumpAStarSteps, "Dump the distribution of A* number of steps", "")
{
log.displayNL( "Distribution of the %u nb steps:", MapAStarNbSteps.size() );
log.displayNL( "NbSteps\tNbOccurrences", MapAStarNbSteps.size() );
for( std::map<uint, uint>::const_iterator first=MapAStarNbSteps.begin(), last=MapAStarNbSteps.end(); first!=last; ++first )
{
log.displayNL( "%u\t%u", first->first, first->second );
}
return true;
}
bool CWorldMap::findAStarPath(CWorldPosition const& start, CWorldPosition const& end, std::vector<CTopology::TTopologyRef>& path, TAStarFlag denyflags) const
{
H_AUTO(findAStarPath1);
// Clear destination path
path.clear();
// Check start position validity
if (!start.isValid())
{
_LastFASPReason = FASPR_INVALID_START_POS;
return false;
}
// Check end position validity
if (!end.isValid())
{
_LastFASPReason = FASPR_INVALID_END_POS;
return false;
}
// Get start and end topologies
CTopology::TTopologyRef startTopo = start.getTopologyRef();
CTopology::TTopologyRef endTopo = end.getTopologyRef();
// Get associated topology nodes
CTopology const& startTopoNode = startTopo.getCstTopologyNode();
CTopology const& endTopoNode = endTopo.getCstTopologyNode();
// Check start point
if (!startTopo.isValid())
{
_LastFASPReason = FASPR_INVALID_START_TOPO;
return false;
}
// Check end point
if (!endTopo.isValid())
{
_LastFASPReason = FASPR_INVALID_END_TOPO;
return false;
}
// Check compatibility of start and end points depending on flags to avoid
RYAI_MAP_CRUNCH::CCompatibleResult res;
areCompatiblesWithoutStartRestriction(start, end, denyflags, res, true);
if (!res.isValid())
{
_LastFASPReason = FASPR_INCOMPATIBLE_POSITIONS;
return false;
}
// Get flags to use to compute the path
TAStarFlag movementFlags = res.movementFlags();
// Get the master topology inside which to compute the path (reminder: no path between different master topo)
uint32 choosenMasterTopo=res.choosenMasterTopo();
// A list of A* nodes
vector<CAStarHeapNode> nodes;
// List of visited topologies, with associated node in 'nodes' vector
map<CTopology::TTopologyId, uint> visited;
// The heap used to store A* nodes
// :TODO: Check if STL heap is not better suited, or if another data structure would be more useful in AIS
CHeap<float, uint> heap;
// Get end position
CVector const& endPoint = endTopo.getCstTopologyNode().Position;
// Create a heap node for the start point
CAStarHeapNode hnode(startTopo, 0xffffffff, 0.0f, true);
// Push it in the node list
nodes.push_back(hnode);
// Take it as first father
uint father = (uint)nodes.size()-1;
// Add start topology to visited nodes (father holds start topo node index for the moment)
visited.insert(std::pair<CTopology::TTopologyId, uint>(startTopo, father));
// Push start node in the heap with a zero cost
heap.push(0.0f, father);
// Boolean to notify that end point has been reached
bool found = false;
#ifdef CHECK_HEAP
static uint32 maxHeap = 65535;
static uint32 maxHeapMeasure = 0;
#endif
uint nbHeapSteps = 0;
while (!heap.empty())
{
#ifdef CHECK_HEAP
if (heap.size()>maxHeap) // if too much calculs, not found (to remove when debugged).
break;
#endif
++nbHeapSteps;
// Get best node (popping it)
father = std::numeric_limits<uint>::max(); // :TODO: Remove that useless statement (since do while first loop ALWAYS overwrite it)
do
{
father = heap.pop();
}
while (!nodes[father].isOpened() && !heap.empty());
if (father == std::numeric_limits<uint>::max())
break;
// Mark current node as closed
hnode.setOpen(false);
// Make best node the current one
hnode = nodes[father];
// Get the current node itself
CTopology::TTopologyRef const& current = hnode.getRef();
// If we reached the end node, stop search
if (current==endTopo)
{
found=true;
break;
}
// Get current node topology
CTopology const& ctp = current.getCstTopologyNode();
// Get g(n) for current node
float dist = hnode.getDistance();
// Examine each neighbour of the current node
for (vector<CTopology::CNeighbourLink>::const_iterator it=ctp.Neighbours.begin(), itEnd=ctp.Neighbours.end();it!=itEnd;++it)
{
// Get the neighbour topology node
CTopology::CNeighbourLink const& neighbourLink = (*it);
CTopology::TTopologyRef const& next = neighbourLink.getTopologyRef();
// If it's not in the same master topo skip it
if (next.getCstTopologyNode().getMasterTopo(movementFlags)!=choosenMasterTopo)
continue;
// Compute neighbour node g(n)
float distance = dist + neighbourLink.getDistance();
uint child;
// Check if node has already been visited
map<CTopology::TTopologyId, uint>::iterator itv = visited.find(next);
if (itv!=visited.end())
{
// Assume child is that node
child = (*itv).second;
// If that node's previous distance is better than the new one skip it
if (nodes[child].getDistance() <= distance)
continue;
// Close the old node
nodes[child].setOpen(false);
// Remove it from visited
visited.erase(itv);
}
// Create a new node for that cell
child = (uint)nodes.size();
nodes.push_back(CAStarHeapNode(next, father, distance, true));
// Compute h(n) as an euclidian distance heuristic
float heuristic = (endPoint-next.getCstTopologyNode().Position).norm();
// Add node to heap with a computed f(n)=g(n)+h(n)
heap.push(distance + heuristic, child);
// Add node to visited
visited.insert(std::pair<CTopology::TTopologyId, uint>(next, child));
}
}
#ifdef CHECK_HEAP
if (heap.size()>maxHeapMeasure)
{
maxHeapMeasure=heap.size();
}
#endif
++MapAStarNbSteps[nbHeapSteps];
LastAStarNbSteps = nbHeapSteps;
#ifdef NL_DEBUG
nlassert(found);
#else
if (!found)
{
nlwarning("(!!Appeler StepH!!)Path not found from %s : %d to %s : %d", start.toString().c_str(), start.slot(), end.toString().c_str(), end.slot());
}
#endif
// If not found, return error
if (!found)
{
_LastFASPReason = FASPR_NOT_FOUND;
return false;
}
// Backtrack path
while (father != 0xffffffff)
{
CAStarHeapNode const& node = nodes[father];
path.push_back(node.getRef());
father = node.getFather();
}
// Reverse path container
std::reverse(path.begin(), path.end());
_LastFASPReason = FASPR_NO_ERROR;
return true;
}
// Finds an A* path
bool CWorldMap::findAStarPath(const CTopology::TTopologyId &start, const CTopology::TTopologyId &end, CAStarPath &path, TAStarFlag denyflags) const
{
H_AUTO(findAStarPath2)
path._TopologiesPath.clear();
CTopology::TTopologyRef startTopo = getTopologyRef(start);
CTopology::TTopologyRef endTopo = getTopologyRef(end);
// if not found start point or end point, abort
if (!startTopo.isValid() || !endTopo.isValid())
return false;
vector<CAStarHeapNode> nodes;
map<CTopology::TTopologyId, uint> visited; // topology + node index in vector
CHeap<float, uint> heap;
const CVector &endPoint = endTopo.getCstTopologyNode().Position;
// add current to heap
CAStarHeapNode hnode(startTopo,0xffffffff,0.0f,true);
nodes.push_back(hnode);
uint father = (uint)nodes.size()-1;
// add current to visited nodes
visited.insert(std::pair<CTopology::TTopologyId, uint>(startTopo, father));
heap.push(0.0f, father);
bool found=false;
while (!heap.empty())
{
// pop best node
father = heap.pop();
hnode = nodes[father];
const CTopology::TTopologyRef &current = hnode.getRef();
// if reached end node, leave
if (current==endTopo)
{
found=true;
break;
}
const CTopology &ctp = current.getCstTopologyNode();
float dist = hnode.getDistance();
for (uint i=0; i<ctp.Neighbours.size(); ++i)
{
const CTopology::CNeighbourLink &neightBourgLink=ctp.Neighbours[i];
const CTopology::TTopologyRef &next=neightBourgLink.getTopologyRef();
const CTopology &ntp = next.getCstTopologyNode();
// don't examine not accessible nodes
if ((ntp.Flags & denyflags) != 0)
continue;
// compute actual node distance
float distance = dist + neightBourgLink.getDistance();
// if node is open or closed and previous visit has shorter path, skip node
map<CTopology::TTopologyId, uint>::iterator itv = visited.find(next);
if (itv != visited.end() && nodes[(*itv).second].getDistance() <= distance)
continue;
// compute heuristic
float heuristic = distance + (endPoint-ntp.Position).norm();
// setup node
CAStarHeapNode cnode(next,father,distance,true);
uint child;
// setup node
if (itv == visited.end())
{
// if node is not open nor closed, create an entry
child = (uint)nodes.size();
nodes.push_back(cnode);
}
else
{
// else recover previous entry -- reopen node
child = (*itv).second;
nodes[child]=cnode;
}
// add node to visited and to heap
heap.push(heuristic, child);
visited.insert(std::pair<CTopology::TTopologyId, uint>(next, child));
}
}
// if not found, return error
if (!found)
return false;
// backtrack path
while (father != 0xffffffff)
{
const CAStarHeapNode& node=nodes[father];
path._TopologiesPath.push_back(node.getRef());
father = node.getFather();
}
// reverse path
reverse(path._TopologiesPath.begin(), path._TopologiesPath.end());
return true;
}
// This whole routine MUST be optimized !! Its slow .. (to much).
bool CWorldMap::findInsideAStarPath(CWorldPosition const& start, CWorldPosition const& end, std::vector<CDirection>& stepPath, TAStarFlag denyflags) const
{
H_AUTO(findInsideAStarPath);
// Check start and end position validity
if (!start.isValid())
{
_LastFIASPReason = FIASPR_INVALID_START_POS;
return false;
}
if (!end.isValid())
{
_LastFIASPReason = FIASPR_INVALID_END_POS;
return false;
}
// Verify that they are in the same topology
if (start.getTopologyRef()!=end.getTopologyRef())
{
_LastFIASPReason = FIASPR_DIFFERENT_TOPO;
return false;
}
// A list of A* nodes
vector<CInsideAStarHeapNode> nodes;
// List of visited nodes, with associated node index in 'nodes' vector
map<CAStarNode, uint> visited;
// The heap used to store A* nodes
// :TODO: Check if STL heap is not better suited, or if another data structure would be more useful in AIS
CHeap<float, uint> heap;
// Get end point
CVector endPoint = end.toVectorD();
// Build a node for the end point
CAStarNode endId(end);
// Build a node for the start point
CAStarNode startNode(start);
// Create a heap node for the start point and push it in the node list
nodes.push_back(CInsideAStarHeapNode(startNode, 0xffffffff, CDirection(), 0.f, true));
// Take it as first father
uint father = (uint)nodes.size()-1;
// Add start node to visited nodes (father holds start node index for the moment)
visited.insert(std::pair<CAStarNode, uint>(startNode, father));
// Push start node in the heap with a zero cost
heap.push(0.0f, father);
// Boolean to notify that end point has been reached
bool found = false;
while (!heap.empty())
{
// Get best node (popping it)
father = heap.pop();
// Get associated heap node
CInsideAStarHeapNode& hnode = nodes[father];
// Get associated A* node
CAStarNode const& current = hnode.getNode();
// If we reached the end node, stop search
if (current==endId)
{
found=true;
break;
}
// Get g(n) for current node
float dist = hnode.getDistance();
// Get current node slot
CSlot slot = current.slot();
// Compute a map position
CMapPosition pos = start; // The map has the same cell than the start pos (coz in same topo)
current.updateMapPosition(pos); // Just update the unit id
// For each neighbour (8 directions)
CNeighbourhood neighbourhood = neighbours(getWorldPosition(pos,slot));
for (uint i=0; i<8; ++i)
{
// Compute a CDirection
CDirection dir((CDirection::TDirection)i);
// If neighbour in that direction is not valid skip it
if (!neighbourhood.isValid(dir))
continue;
// :TODO: Continue documentation
// If we cannot move in that direction skip it
CWorldPosition mv(getWorldPosition(pos, slot));
if (!moveDiagTestBothSide(mv, dir))
continue;
// If that new point is not in the same cell skip it
if (!mv.hasSameFullCellId(start))
continue;
// If that point's flags are not compatible skip it
if ((denyflags & mv.getTopologyRef().getCstTopologyNode().getFlags()) != 0)
continue;
// Build an A* node
CAStarNode next(mv);
// Compute g(n) (diagonal)
float distance = dist + (((i & 1) != 0) ? 1.4142f : 1.0f);
// If node has already been visited and previous distance was better skip it
map<CAStarNode, uint>::iterator itv = visited.find(next);
if ( itv != visited.end()
&& nodes[(*itv).second].getDistance() <= distance )
continue;
uint child;
// If node has already been visited update it
if (itv!=visited.end())
{
child = (*itv).second;
nodes[child] = CInsideAStarHeapNode(next, father, dir, distance, true);
}
// Else create a new node
else
{
child = (uint)nodes.size();
nodes.push_back(CInsideAStarHeapNode(next, father, dir, distance, true));
}
// Compute h(n) as an euclidian distance heuristic
float heuristic = (endPoint-mv.toVectorD()).norm();
// Add node to heap with a computed f(n)=g(n)+h(n)
heap.push(distance + heuristic, child);
// Add node to visited
visited.insert(std::pair<CAStarNode, uint>(next, child));
}
}
#ifdef NL_DEBUG
nlassert(found);
#endif
// If not found, return error
if (!found)
{
_LastFIASPReason = FIASPR_NOT_FOUND;
return false;
}
stepPath.clear();
// Backtrack path
while (father != 0xffffffff)
{
if (nodes[father].getFather() != 0xffffffff)
stepPath.push_back(nodes[father].getDirection());
father = nodes[father].getFather();
}
// Reverse path container
std::reverse(stepPath.begin(), stepPath.end());
_LastFIASPReason = FIASPR_NO_ERROR;
return true;
}
//////////////////////////////////////////////////////////////////////////////
// //
//////////////////////////////////////////////////////////////////////////////
bool CWorldMap::moveTowards(CWorldPosition& pos, CTopology::TTopologyRef const& topology) const
{
CGridDirectionLayer const* layer = getGridDirectionLayer(pos, topology);
if (!layer)
return false;
CDirection motion=layer->getDirection(pos);
if (!motion.isValid())
return false;
return move(pos,motion);
}
// Moves according a to a given path, returns false if failed
bool CWorldMap::move(CWorldPosition &pos, CAStarPath &path, uint &currentstep) const
{
if (currentstep >= path._TopologiesPath.size())
return false;
CTopology::TTopologyRef cid(pos);
if (!cid.isValid())
return false;
if (cid==path._TopologiesPath[currentstep])
{
++currentstep;
if (currentstep==path._TopologiesPath.size())
return false;
}
return moveTowards(pos, path._TopologiesPath[currentstep]);
}
// Moves from a position to another
bool CWorldMap::move(CWorldPosition& pos, CMapPosition const& end, TAStarFlag const denyFlags) const
{
CWorldPosition tempPos(pos);
BOMB_IF((tempPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0, "Error in CWorldMap::mode, invalid flag "<<RYAI_MAP_CRUNCH::toString(tempPos.getTopologyRef().getCstTopologyNode().getFlags())
<<"on world pos "<<pos.toString()<<" while going to map pos "<<end.toString()<<" with denyflags "<<RYAI_MAP_CRUNCH::toString(denyFlags), return false);
// not optimum but it will be rewrite for each specialized rootcell type.
const sint32 x0 = pos.x();
const sint32 y0 = pos.y();
const sint32 deltax = end.x() - x0;
const sint32 deltay = end.y() - y0;
const sint32 d = std::max(abs(deltax), abs(deltay));
for (sint32 i=1; i<=d; ++i)
{
const sint dx = x0 + (deltax*i)/d - pos.x();
const sint dy = y0 + (deltay*i)/d - pos.y();
if ( !move(tempPos, CDirection(dx,dy))
|| (tempPos.getTopologyRef().getCstTopologyNode().getFlags()&denyFlags)!=0) // Arghh !!
return false;
pos=tempPos;
}
return true;
}
// Clears height map
void CWorldMap::clearHeightMap()
{
CMapPosition min, max;
getBounds(min, max);
CMapPosition scan, scanline;
for (scan = min; scan.yCoord() != max.yCoord(); scan = scan.stepCell(0, 1))
{
for (scanline = scan; scanline.x() != max.x(); scanline = scanline.stepCell(1, 0))
{
CRootCell* rootCell=getRootCell(scanline);
if (!rootCell)
continue;
rootCell->clearHeightMap();
}
}
}
// checks motion layers
void CWorldMap::checkMotionLayer()
{
CMapPosition min, max;
getBounds(min, max);
uint compute = 0, white = 0, simple = 0, multi = 0, other = 0;
countCells(compute, white, simple, multi, other);
uint total = compute+white+simple+multi+other;
uint compCells = 0;
CMapPosition scan, scanline;
CTimeEstimator timeest(total);
for (scan = min; scan.yCoord() != max.yCoord(); scan = scan.stepCell(0, 1))
{
for (scanline = scan; scanline.x() != max.x(); scanline = scanline.stepCell(1, 0))
{
CRootCell* rootCell=getRootCell(scanline);
if (!rootCell)
continue;
timeest.step("checkMotionLayer");
vector<CTopology> &topologies = rootCell->getTopologiesNodes();
// move from any point to the current topology
uint i;
for (i=0; i<topologies.size(); ++i)
{
CTopology &topology = topologies[i];
CTopology::TTopologyRef tref = getTopologyRef(topology.Id);
set<CTopology::TTopologyId> neighbours;
//
uint16 toflags = topology.Flags;
uint j;
for (j=0; j<topology.Neighbours.size(); ++j)
neighbours.insert(topology.Neighbours[j].getTopologyRef());
sint x, y, slot;
bool failed = false;
for (y=-16; y<32; ++y)
{
for (x=-16; x<32; ++x)
{
CMapPosition cpos(scanline.x()+x, scanline.y()+y);
for (slot=0; slot<3; ++slot)
{
// build world pos and test it is valid
CWorldPosition cwpos = getSafeWorldPosition(cpos, CSlot(slot));
if (!cwpos.isValid())
continue;
// if current topo is not a neighbour of checked topo, go to the next pos
CTopology::TTopologyId ctopoId = getTopologyId(cwpos);
if (neighbours.find(ctopoId) == neighbours.end())
continue;
//
CTopology &starttopo = getTopologyNode(ctopoId);
uint16 fromflags = starttopo.Flags;
cwpos = getWorldPosition(cpos, CSlot(slot));
bool found = false;
uint32 numSteps = 0;
do
{
if (getTopologyId(cwpos) == tref)
{
found = true;
break;
}
CTopology &ctopo = getTopologyNode(getTopologyId(cwpos));
uint16 cflags = ctopo.Flags;
uint16 allow = ((~fromflags) & (~toflags) & cflags);
if (allow != 0)
{
nlwarning("Unallowed move from (%04X,%04X,%d-topo=%08X) to topo %08X, fromflags=%04X, toflags=%04X, cflags=%04X", cpos.x(), cpos.y(), slot, ctopoId.getVal(), tref.getVal(), fromflags, toflags, cflags);
failed = true;
}
}
while (moveTowards(cwpos, tref) && cwpos.isValid() && numSteps++ < 128);
if (!found)
{
nlwarning("Failed to go from (%d,%d,%d-topo=%08X) to topo %08X", cpos.x(), cpos.y(), slot, ctopoId.getVal(), tref.getVal());
}
}
}
}
if (failed)
{
nlinfo("---- scanline = %04X %04X topo = %d ----", scanline.x(), scanline.y(), i);
topology.DirectionMap->dump();
}
}
}
}
}
//
void CWorldMap::buildMasterTopo(bool allowWater, bool allowNogo)
{
nlinfo("buildMasterTopo");
CMapPosition min, max;
getBounds(min, max);
CMapPosition scan, scanline;
uint masterTopo = 0;
uint totalTopos = 0;
for (scan = min; scan.y() != max.y(); scan = scan.stepCell(0, 1))
{
for (scanline = scan; scanline.x() != max.x(); scanline = scanline.stepCell(1, 0))
{
CRootCell *cell = getRootCell(scanline);
if (cell == NULL)
continue;
vector<CTopology> &topos = cell->getTopologiesNodes();
uint i;
for (i=0; i<topos.size(); ++i)
{
CTopology& tp = topos[i];
++totalTopos;
if (!tp.isCompatible(allowWater, allowNogo) ||
tp.getMasterTopo(allowWater, allowNogo) != CTopology::TTopologyId::UNDEFINED_TOPOLOGY)
continue;
set<CTopology::TTopologyId> tovisit;
// set mastertopo id
tp.getMasterTopoRef(allowWater, allowNogo) = masterTopo;
tovisit.insert(tp.Id);
while (!tovisit.empty())
{
CTopology& t = getTopologyNode(*(tovisit.begin()));
tovisit.erase(tovisit.begin());
uint j;
for (j=0; j<t.Neighbours.size(); ++j)
{
CTopology& neighb = getTopologyNode(t.Neighbours[j].getTopologyRef());
// can go to the neighbour and neighb not visited yet ?
if (!neighb.isCompatible(allowWater, allowNogo) ||
neighb.getMasterTopo(allowWater, allowNogo) != CTopology::TTopologyId::UNDEFINED_TOPOLOGY)
continue;
// set mastertopo id
neighb.getMasterTopoRef(allowWater, allowNogo) = masterTopo;
tovisit.insert(neighb.Id);
}
}
++masterTopo;
}
}
}
nlinfo("Built %d master topologies (%d topos tested)", masterTopo, totalTopos);
}
//
void CWorldMap::countSuperTopo()
{
nlinfo("Count super topologies");
CMapPosition min, max;
getBounds(min, max);
CMapPosition scan, scanline;
uint superTopo = 0;
set<CTopology::TTopologyId> visited;
uint totalTopos = 0;
for (scan = min; scan.y() != max.y(); scan = scan.stepCell(0, 1))
{
for (scanline = scan; scanline.x() != max.x(); scanline = scanline.stepCell(1, 0))
{
const CRootCell *cell = getRootCellCst(scanline);
if (cell == NULL)
continue;
const vector<CTopology> &topos = cell->getTopologiesNodes();
uint i;
for (i=0; i<topos.size(); ++i)
{
CTopology::TTopologyId topoid = topos[i].Id;
++totalTopos;
if (visited.find(topoid) == visited.end())
{
set<CTopology::TTopologyId> tovisit;
tovisit.insert(topoid);
visited.insert(topoid);
while (!tovisit.empty())
{
CTopology::TTopologyId id = *(tovisit.begin());
tovisit.erase(tovisit.begin());
const CTopology &t = getTopologyNode(id);
uint j;
for (j=0; j<t.Neighbours.size(); ++j)
{
CTopology::TTopologyId neighb = t.Neighbours[j].getTopologyRef();
if (visited.find(neighb) == visited.end())
{
visited.insert(neighb);
tovisit.insert(neighb);
}
}
}
++superTopo;
}
}
}
}
nlinfo("Found %d super topologies (%d topos tested, %d topos visited)", superTopo, totalTopos, visited.size());
}
bool CWorldMap::setWorldPosition(sint32 z, CWorldPosition &wpos, const CAIVector &pos, const CRootCell *originCell) const
{
CSlot slot;
const CMapPosition mapPos(pos);
const CRootCell *cell = originCell ? originCell : getRootCellCst(mapPos);
if (!cell)
{
return false;
}
sint32 minDistZ = INT_MAX;
CSlot bestSlot;
sint32 bestZ = 0;
// Find best slot
for (uint32 s=0; s<3; ++s)
{
if (!cell->isSlotUsed(mapPos, CSlot(s)))
continue;
CSlot sslot=CSlot(s);
sint32 sh = cell->getMetricHeight(CWorldPosition(cell, mapPos, sslot));
sint32 dist = z-sh;
dist = dist<0?-dist:dist;
if (dist < minDistZ)
{
nlassert(dist>=0);
minDistZ = dist;
bestZ = sh;
bestSlot = sslot;
}
}
if (!bestSlot.isValid())
{
wpos = CWorldPosition(cell,mapPos,bestSlot,true);
return false;
}
wpos = CWorldPosition(cell,mapPos,bestSlot);
// if (simulateBug(5))
// {
// if (minDistZ > 2000)
// {
// return false;
// }
// }
// else
{
// :KLUDGE: Water hack
// If error is too big and player is either not in water or under slot (ie not floating above slot at surface)
if (minDistZ > 2000 && ((wpos.getFlags()&RYAI_MAP_CRUNCH::Water)==0 || z<bestZ))
{
return false;
}
}
return true;
}
bool CWorldMap::setWorldPosition( double z, CWorldPosition &wpos, const CAIVector &pos, const CRootCell *originCell) const
{
nlassert(false && "Double version of setWorldPosition isn't tested !!! Verify it's the same than above sint32 version !");
CSlot slot;
const CMapPosition mapPos(pos);
const CRootCell *cell = originCell ? originCell : getRootCellCst(mapPos);
if (!cell)
{
return false;
}
double minDistZ = DBL_MAX;
CSlot bestSlot;
double bestZ;
// find best slot
for (uint32 s=0; s<3; ++s)
{
if (!cell->isSlotUsed(mapPos, CSlot(s)))
continue;
CSlot sslot=CSlot(s);
double sh = ((double)cell->getMetricHeight(CWorldPosition(cell, mapPos, sslot)))/1000.0;
double dist = fabs(z-sh);
if (dist < minDistZ)
{
nlassert(dist>=0);
minDistZ = dist;
bestZ = sh;
bestSlot = sslot;
}
}
if (!bestSlot.isValid())
{
wpos=CWorldPosition(cell,mapPos,bestSlot,true);
return false;
}
if (minDistZ > 2.000)
{
// nldebug("Setting a WorldPosition too far from specified z: x=%d y=%d z=%f slotz=%f", pos.x(), pos.y(), z, bestZ);
wpos = CWorldPosition(cell,mapPos,bestSlot,true);
return false;
}
wpos=CWorldPosition(cell,mapPos,bestSlot);
return true;
}
}