2022-04-13 09:20:25 +00:00
|
|
|
|
|
|
|
// NOTE: Shader automatically converted from Godot Engine 4.0.alpha5's PhysicalSkyMaterial.
|
2022-04-13 10:12:38 +00:00
|
|
|
// And then augmented with a few tweaks
|
2022-04-13 09:20:25 +00:00
|
|
|
|
|
|
|
shader_type sky;
|
|
|
|
|
|
|
|
uniform float rayleigh : hint_range(0, 64) = 2.0;
|
|
|
|
uniform vec4 rayleigh_color : hint_color = vec4(0.3, 0.405, 0.6, 1.0);
|
|
|
|
uniform float mie : hint_range(0, 1) = 0.005;
|
|
|
|
uniform float mie_eccentricity : hint_range(-1, 1) = 0.8;
|
|
|
|
uniform vec4 mie_color : hint_color = vec4(0.69, 0.729, 0.812, 1.0);
|
|
|
|
|
|
|
|
uniform float turbidity : hint_range(0, 1000) = 10.0;
|
|
|
|
uniform float sun_disk_scale : hint_range(0, 360) = 1.0;
|
|
|
|
uniform vec4 ground_color : hint_color = vec4(0.1, 0.07, 0.034, 1.0);
|
|
|
|
uniform float exposure : hint_range(0, 128) = 0.1;
|
|
|
|
uniform float dither_strength : hint_range(0, 10) = 1.0;
|
|
|
|
|
|
|
|
uniform sampler2D night_sky : hint_black_albedo;
|
|
|
|
|
|
|
|
uniform sampler2D samayun : hint_albedo;
|
2022-04-13 10:12:38 +00:00
|
|
|
uniform float samayun_arc = 25 ;
|
2022-04-13 09:20:25 +00:00
|
|
|
uniform vec3 samayun_position = vec3( 0.0, 0.5, 0.0 );
|
|
|
|
|
2022-04-13 10:12:38 +00:00
|
|
|
uniform sampler2D zabr : hint_albedo;
|
|
|
|
uniform float zabr_arc = 12 ;
|
|
|
|
uniform vec3 zabr_position = vec3( 0.0, 0.7, 0.0 );
|
|
|
|
|
2022-04-13 09:20:25 +00:00
|
|
|
const vec3 UP = vec3( 0.0, 1.0, 0.0 );
|
|
|
|
|
|
|
|
// Sun constants
|
|
|
|
const float SUN_ENERGY = 1000.0;
|
|
|
|
|
|
|
|
// Optical length at zenith for molecules.
|
|
|
|
const float rayleigh_zenith_size = 8.4e3;
|
|
|
|
const float mie_zenith_size = 1.25e3;
|
|
|
|
|
|
|
|
float henyey_greenstein(float cos_theta, float g) {
|
|
|
|
const float k = 0.0795774715459;
|
|
|
|
return k * (1.0 - g * g) / (pow(1.0 + g * g - 2.0 * g * cos_theta, 1.5));
|
|
|
|
}
|
|
|
|
|
|
|
|
// From: https://www.shadertoy.com/view/4sfGzS credit to iq
|
|
|
|
float hash(vec3 p) {
|
|
|
|
p = fract( p * 0.3183099 + 0.1 );
|
|
|
|
p *= 17.0;
|
|
|
|
return fract(p.x * p.y * p.z * (p.x + p.y + p.z));
|
|
|
|
}
|
|
|
|
|
|
|
|
void sky() {
|
|
|
|
if (LIGHT0_ENABLED) {
|
|
|
|
float zenith_angle = clamp( dot(UP, normalize(LIGHT0_DIRECTION)), -1.0, 1.0 );
|
|
|
|
float sun_energy = max(0.0, 1.0 - exp(-((PI * 0.5) - acos(zenith_angle)))) * SUN_ENERGY * LIGHT0_ENERGY;
|
|
|
|
float sun_fade = 1.0 - clamp(1.0 - exp(LIGHT0_DIRECTION.y), 0.0, 1.0);
|
|
|
|
|
|
|
|
// Rayleigh coefficients.
|
|
|
|
float rayleigh_coefficient = rayleigh - ( 1.0 * ( 1.0 - sun_fade ) );
|
|
|
|
vec3 rayleigh_beta = rayleigh_coefficient * rayleigh_color.rgb * 0.0001;
|
|
|
|
// mie coefficients from Preetham
|
|
|
|
vec3 mie_beta = turbidity * mie * mie_color.rgb * 0.000434;
|
|
|
|
|
|
|
|
// Optical length.
|
|
|
|
float zenith = acos(max(0.0, dot(UP, EYEDIR)));
|
|
|
|
float optical_mass = 1.0 / (cos(zenith) + 0.15 * pow(93.885 - degrees(zenith), -1.253));
|
|
|
|
float rayleigh_scatter = rayleigh_zenith_size * optical_mass;
|
|
|
|
float mie_scatter = mie_zenith_size * optical_mass;
|
|
|
|
|
|
|
|
// Light extinction based on thickness of atmosphere.
|
|
|
|
vec3 extinction = exp(-(rayleigh_beta * rayleigh_scatter + mie_beta * mie_scatter));
|
|
|
|
|
|
|
|
// In scattering.
|
|
|
|
float cos_theta = dot(EYEDIR, normalize(LIGHT0_DIRECTION));
|
|
|
|
|
|
|
|
float rayleigh_phase = (3.0 / (16.0 * PI)) * (1.0 + pow(cos_theta * 0.5 + 0.5, 2.0));
|
|
|
|
vec3 betaRTheta = rayleigh_beta * rayleigh_phase;
|
|
|
|
|
|
|
|
float mie_phase = henyey_greenstein(cos_theta, mie_eccentricity);
|
|
|
|
vec3 betaMTheta = mie_beta * mie_phase;
|
|
|
|
|
|
|
|
vec3 Lin = pow(sun_energy * ((betaRTheta + betaMTheta) / (rayleigh_beta + mie_beta)) * (1.0 - extinction), vec3(1.5));
|
|
|
|
// Hack from https://github.com/mrdoob/three.js/blob/master/examples/jsm/objects/Sky.js
|
|
|
|
Lin *= mix(vec3(1.0), pow(sun_energy * ((betaRTheta + betaMTheta) / (rayleigh_beta + mie_beta)) * extinction, vec3(0.5)), clamp(pow(1.0 - zenith_angle, 5.0), 0.0, 1.0));
|
|
|
|
|
|
|
|
// Hack in the ground color.
|
|
|
|
Lin *= mix(ground_color.rgb, vec3(1.0), smoothstep(-0.1, 0.1, dot(UP, EYEDIR)));
|
|
|
|
|
|
|
|
// Solar disk and out-scattering.
|
|
|
|
float sunAngularDiameterCos = cos(LIGHT0_SIZE * sun_disk_scale);
|
|
|
|
float sunAngularDiameterCos2 = cos(LIGHT0_SIZE * sun_disk_scale*0.5);
|
|
|
|
float sundisk = smoothstep(sunAngularDiameterCos, sunAngularDiameterCos2, cos_theta);
|
|
|
|
vec3 L0 = (sun_energy * 1900.0 * extinction) * sundisk * LIGHT0_COLOR;
|
|
|
|
L0 += texture(night_sky, SKY_COORDS).xyz * extinction;
|
|
|
|
|
|
|
|
vec3 color = (Lin + L0) * 0.04;
|
|
|
|
COLOR = pow(color, vec3(1.0 / (1.2 + (1.2 * sun_fade))));
|
|
|
|
COLOR *= exposure;
|
|
|
|
// Make optional, eliminates banding.
|
|
|
|
COLOR += (hash(EYEDIR * 1741.9782) * 0.08 - 0.04) * 0.016 * dither_strength;
|
|
|
|
} else {
|
|
|
|
// There is no sun, so display night_sky and nothing else.
|
|
|
|
COLOR = texture(night_sky, SKY_COORDS).xyz * 0.04;
|
|
|
|
COLOR *= exposure;
|
|
|
|
}
|
2022-04-13 10:40:14 +00:00
|
|
|
// Calculate respective scales of celestial objects
|
2022-04-13 10:12:38 +00:00
|
|
|
float samayun_scale = radians(samayun_arc) ;
|
2022-04-13 10:40:14 +00:00
|
|
|
float zabr_scale = radians(zabr_arc) ;
|
|
|
|
|
|
|
|
// Adding Samayun
|
2022-04-13 10:12:38 +00:00
|
|
|
if (length(EYEDIR - normalize(samayun_position)) < samayun_scale / 2.0) { // we are in the area of the sky where samayun is placed
|
2022-04-13 09:20:25 +00:00
|
|
|
//We define a local plane tangent to the skydome at samayun_position
|
|
|
|
//We work with everything normalized
|
2022-04-13 10:12:38 +00:00
|
|
|
vec3 n1 = normalize(cross(samayun_position,vec3(0.0,1.0,0.0))) ;
|
|
|
|
vec3 n2 = normalize(cross(samayun_position,n1)) ;
|
2022-04-13 10:40:14 +00:00
|
|
|
//We project EYEDIR on this plane with an approximate correction for projection
|
|
|
|
float x = dot(EYEDIR,n1) * 0.89 ;
|
|
|
|
float y = dot(EYEDIR,n2) * 0.89 ;
|
|
|
|
// If zabr is nearer at this place, do nothing
|
|
|
|
if (length(EYEDIR - normalize(zabr_position)) < zabr_scale / 2.0 && length(zabr_position) < length(samayun_position)){
|
|
|
|
} else { // // Add samayun to the sky
|
|
|
|
COLOR += texture(samayun, vec2(x,y) / samayun_scale + vec2(0.5)).rgb * texture(samayun, vec2(x,y) / samayun_scale + vec2(0.5)).a;
|
|
|
|
}
|
2022-04-13 09:20:25 +00:00
|
|
|
}
|
2022-04-13 10:12:38 +00:00
|
|
|
// Adding zabr
|
|
|
|
if (length(EYEDIR - normalize(zabr_position)) < zabr_scale / 2.0) { // we are in the area of the sky where zabr is placed
|
|
|
|
//We define a local plane tangent to the skydome at zabr_position
|
|
|
|
//We work with everything normalized
|
|
|
|
vec3 z_n1 = normalize(cross(zabr_position,vec3(0.0,1.0,0.0))) ;
|
|
|
|
vec3 z_n2 = normalize(cross(zabr_position,z_n1)) ;
|
2022-04-13 10:40:14 +00:00
|
|
|
//We project EYEDIR on this plane with an approximate correction for projection
|
|
|
|
float z_x = dot(EYEDIR,z_n1) * 0.89 ;
|
|
|
|
float z_y = dot(EYEDIR,z_n2) * 0.89 ;
|
|
|
|
// If samayun is nearer at this place, do nothing
|
|
|
|
if (length(EYEDIR - normalize(samayun_position)) < samayun_scale / 2.0 && length(samayun_position) < length(zabr_position)){
|
|
|
|
} else { // Add zabr to the sky
|
|
|
|
COLOR += texture(zabr, vec2(z_x,z_y) / zabr_scale + vec2(0.5)).rgb * texture(zabr, vec2(z_x,z_y) / zabr_scale + vec2(0.5)).a;
|
|
|
|
}
|
2022-04-13 10:12:38 +00:00
|
|
|
}
|
2022-04-13 09:20:25 +00:00
|
|
|
}
|