shader_type canvas_item; uniform vec2 u_offset; uniform float u_scale = 0.02; uniform float u_base_height = 0.0; uniform float u_height_range = 100.0; uniform int u_seed; uniform int u_octaves = 5; uniform float u_roughness = 0.5; uniform float u_curve = 1.0; uniform vec2 u_uv_offset; uniform vec2 u_uv_scale = vec2(1.0, 1.0); //////////////////////////////////////////////////////////////////////////////// // Perlin noise source: // https://github.com/curly-brace/Godot-3.0-Noise-Shaders // // GLSL textureless classic 2D noise \"cnoise\", // with an RSL-style periodic variant \"pnoise\". // Author: Stefan Gustavson (stefan.gustavson@liu.se) // Version: 2011-08-22 // // Many thanks to Ian McEwan of Ashima Arts for the // ideas for permutation and gradient selection. // // Copyright (c) 2011 Stefan Gustavson. All rights reserved. // Distributed under the MIT license. See LICENSE file. // https://github.com/stegu/webgl-noise // vec4 mod289(vec4 x) { return x - floor(x * (1.0 / 289.0)) * 289.0; } vec4 permute(vec4 x) { return mod289(((x * 34.0) + 1.0) * x); } vec4 taylorInvSqrt(vec4 r) { return 1.79284291400159 - 0.85373472095314 * r; } vec2 fade(vec2 t) { return t * t * t * (t * (t * 6.0 - 15.0) + 10.0); } // Classic Perlin noise float cnoise(vec2 P) { vec4 Pi = floor(vec4(P, P)) + vec4(0.0, 0.0, 1.0, 1.0); vec4 Pf = fract(vec4(P, P)) - vec4(0.0, 0.0, 1.0, 1.0); Pi = mod289(Pi); // To avoid truncation effects in permutation vec4 ix = Pi.xzxz; vec4 iy = Pi.yyww; vec4 fx = Pf.xzxz; vec4 fy = Pf.yyww; vec4 i = permute(permute(ix) + iy); vec4 gx = fract(i * (1.0 / 41.0)) * 2.0 - 1.0 ; vec4 gy = abs(gx) - 0.5 ; vec4 tx = floor(gx + 0.5); gx = gx - tx; vec2 g00 = vec2(gx.x,gy.x); vec2 g10 = vec2(gx.y,gy.y); vec2 g01 = vec2(gx.z,gy.z); vec2 g11 = vec2(gx.w,gy.w); vec4 norm = taylorInvSqrt(vec4(dot(g00, g00), dot(g01, g01), dot(g10, g10), dot(g11, g11))); g00 *= norm.x; g01 *= norm.y; g10 *= norm.z; g11 *= norm.w; float n00 = dot(g00, vec2(fx.x, fy.x)); float n10 = dot(g10, vec2(fx.y, fy.y)); float n01 = dot(g01, vec2(fx.z, fy.z)); float n11 = dot(g11, vec2(fx.w, fy.w)); vec2 fade_xy = fade(Pf.xy); vec2 n_x = mix(vec2(n00, n01), vec2(n10, n11), fade_xy.x); float n_xy = mix(n_x.x, n_x.y, fade_xy.y); return 2.3 * n_xy; } //////////////////////////////////////////////////////////////////////////////// float get_fractal_noise(vec2 uv) { float scale = 1.0; float sum = 0.0; float amp = 0.0; int octaves = u_octaves; float p = 1.0; uv.x += float(u_seed) * 61.0; for (int i = 0; i < octaves; ++i) { sum += p * cnoise(uv * scale); amp += p; scale *= 2.0; p *= u_roughness; } float gs = sum / amp; return gs; } float get_height(vec2 uv) { float h = 0.5 + 0.5 * get_fractal_noise(uv); h = pow(h, u_curve); h = u_base_height + h * u_height_range; return h; } void fragment() { vec2 uv = SCREEN_UV; // Handle screen padding: transform UV back into generation space uv = (uv + u_uv_offset) * u_uv_scale; // Offset and scale for the noise itself uv = (uv + u_offset) * u_scale; float h = get_height(uv); COLOR = vec4(h, h, h, 1.0); }