khanat-opennel-code/code/nel/src/pacs/build_indoor.cpp
2010-05-06 02:08:41 +02:00

705 lines
18 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <map>
#include <vector>
#include "stdpacs.h"
#include "collision_mesh_build.h"
#include "local_retriever.h"
#include "exterior_mesh.h"
#include "build_indoor.h"
using namespace std;
using namespace NLMISC;
namespace NLPACS
{
/**
* The interior surface class. Intermediate to compute real retriever surfaces
* \author Benjamin Legros
* \author Nevrax France
* \date 2001
*/
class CInteriorSurface
{
public:
/// The collision mesh root object
CCollisionMeshBuild *CollisionMeshBuild;
/// The faces that compose the surface
std::vector<uint32> Faces;
/// The Id of the surface
sint32 Id;
/// The center of the surface
NLMISC::CVector Center;
/// The material of the surface
sint32 Material;
public:
CCollisionFace &getFace(uint face) { return CollisionMeshBuild->Faces[Faces[face]]; }
CCollisionFace &getNeighbor(uint face, uint edge)
{
return CollisionMeshBuild->Faces[getFace(face).Edge[edge]];
}
};
/**
* The border of interior surfaces.
* \author Benjamin Legros
* \author Nevrax France
* \date 2001
*/
class CInteriorBorder
{
public:
/// The vertices that compose the border
std::vector<NLMISC::CVector> Vertices;
/// The left and right surfaces
sint32 Left, Right;
public:
};
// how to build interior snapping data
void buildSnapping(CCollisionMeshBuild &cmb, CLocalRetriever &lr);
// how to build surfaces
void buildSurfaces(CCollisionMeshBuild &cmb, CLocalRetriever &lr);
//
// functions to build interior surfaces and borders from mesh
//
// how to generate connex surfaces
void floodFillSurfaces(CCollisionMeshBuild &cmb, vector<CInteriorSurface> &surfaces)
{
sint32 currentId = 0;
uint i;
for (i=0; i<cmb.Faces.size(); ++i)
cmb.Faces[i].InternalSurface = -1;
for (i=0; i<cmb.Faces.size(); ++i)
{
CCollisionFace &face = cmb.Faces[i];
if (face.Surface == CCollisionFace::ExteriorSurface || face.InternalSurface != -1)
continue;
vector<sint32> stack;
stack.push_back(sint32(i));
face.InternalSurface = currentId;
surfaces.resize(surfaces.size()+1);
surfaces.back().Id = currentId;
surfaces.back().CollisionMeshBuild = &cmb;
surfaces.back().Material = face.Material;
while (!stack.empty())
{
uint pop = stack.back();
stack.pop_back();
surfaces.back().Faces.push_back(pop);
CCollisionFace &popFace = cmb.Faces[pop];
sint32 edge, neighb;
for (edge=0; edge<3; ++edge)
{
if ((neighb = popFace.Edge[edge]) != -1 &&
cmb.Faces[neighb].InternalSurface == -1 &&
cmb.Faces[neighb].Surface == popFace.Surface)
{
cmb.Faces[neighb].InternalSurface = currentId;
stack.push_back(neighb);
}
}
}
++currentId;
}
}
// reset the edge flags of the whole collision mesh build
void resetEdgeFlags(CCollisionMeshBuild &cmb)
{
uint face, edge;
for (face=0; face<cmb.Faces.size(); ++face)
for (edge=0; edge<3; ++edge)
cmb.Faces[face].EdgeFlags[edge] = false;
}
// how to generate the borders of a given surface
void followBorder(CInteriorSurface &surface, uint first, uint edge, uint sens, vector<CVector> &vstore, bool &loop)
{
CCollisionFace *current = &surface.getFace(first);
CCollisionFace *next = (current->Edge[edge] == -1) ? NULL : &surface.CollisionMeshBuild->Faces[current->Edge[edge]];
current->EdgeFlags[edge] = true;
sint32 currentFace = surface.Faces[first];
const sint32 currentSurfId = current->InternalSurface;
const sint32 oppositeSurfId = (next != NULL) ? next->InternalSurface : (current->Visibility[edge] ? -1 : -2);
sint oedge;
sint pivot = (edge+sens)%3;
sint nextEdge = edge;
bool allowThis = true;
// adds the pivot to the border and its normal
vstore.push_back(surface.CollisionMeshBuild->Vertices[current->V[pivot]]);
for(;;)
{
loop = false;
// -1 means no neighbor at all, -2 means a neighbor that is not available yet
sint32 thisOpposite = (next != NULL) ? next->InternalSurface : (current->Visibility[nextEdge] ? -1 : -2);
if (thisOpposite != currentSurfId && thisOpposite != oppositeSurfId ||
(loop = (current->EdgeFlags[nextEdge] && !allowThis)))
{
// if reaches the end of the border, then quits.
break;
}
else if (thisOpposite == oppositeSurfId)
{
// if the next edge belongs to the border, then go on the same element
current->EdgeFlags[nextEdge] = true;
if (oppositeSurfId >= 0)
{
for (oedge=0; oedge<3 && next->Edge[oedge]!=currentFace; ++oedge)
;
nlassert(oedge != 3);
nlassert(allowThis || !next->EdgeFlags[oedge]);
next->EdgeFlags[oedge] = true;
}
pivot = (pivot+sens)%3;
nextEdge = (nextEdge+sens)%3;
next = (current->Edge[nextEdge] == -1) ? NULL : &surface.CollisionMeshBuild->Faces[current->Edge[nextEdge]];
vstore.push_back(surface.CollisionMeshBuild->Vertices[current->V[pivot]]);
}
else
{
// if the next element is inside the surface, then go to the next element
nlassert(next->InternalSurface == currentSurfId);
for (oedge=0; oedge<3 && next->Edge[oedge]!=currentFace; ++oedge)
;
nlassert(oedge != 3);
currentFace = current->Edge[nextEdge];
current = next;
pivot = (oedge+3-sens)%3;
nextEdge = (oedge+sens)%3;
next = (current->Edge[nextEdge] == -1) ? NULL : &surface.CollisionMeshBuild->Faces[current->Edge[nextEdge]];
}
allowThis = false;
}
}
void computeSurfaceBorders(CInteriorSurface &surface, vector<CInteriorBorder> &borders)
{
uint face, edge;
for (face=0; face<surface.Faces.size(); ++face)
{
// for each element,
// scan for a edge that points to a different surface
CCollisionFace &cf = surface.getFace(face);
for (edge=0; edge<3; ++edge)
{
if ((cf.Edge[edge] == -1 || surface.getNeighbor(face, edge).InternalSurface != surface.Id) &&
!cf.EdgeFlags[edge])
{
borders.resize(borders.size()+1);
CInteriorBorder &border = borders.back();
border.Left = cf.InternalSurface;
if (cf.Edge[edge] == -1)
{
// link on a neighbor retriever or not at all
border.Right = cf.Visibility[edge] ? -1 : -2;
}
else
{
// link on the neighbor surface
border.Right = surface.CollisionMeshBuild->Faces[cf.Edge[edge]].InternalSurface;
}
nldebug("generate border %d (%d-%d)", borders.size()-1, border.Left, border.Right);
bool loop;
vector<CVector> bwdVerts;
vector<CVector> &fwdVerts = border.Vertices;
followBorder(surface, face, edge, 2, bwdVerts, loop);
sint i;
fwdVerts.reserve(bwdVerts.size());
fwdVerts.clear();
for (i=(sint)(bwdVerts.size()-1); i>=0; --i)
{
fwdVerts.push_back(bwdVerts[i]);
}
if (loop)
{
fwdVerts.push_back(fwdVerts.front());
}
else
{
fwdVerts.resize(fwdVerts.size()-2);
followBorder(surface, face, edge, 1, fwdVerts, loop);
}
}
}
}
}
void computeSurfaceCenter(CInteriorSurface &surface)
{
CCollisionMeshBuild &cmb = *(surface.CollisionMeshBuild);
CVector center = CVector::Null;
float totalWeight = 0.0f;
uint i, j;
for (i=0; i<surface.Faces.size(); ++i)
{
CCollisionFace &face = surface.getFace(i);
CVector v[3];
for (j=0; j<3; ++j)
v[j] = cmb.Vertices[face.V[j]];
float weight = ((v[2]-v[0])^(v[1]-v[0])).norm();
center += (v[0]+v[1]+v[2])*(weight/3.0f);
totalWeight += weight;
}
surface.Center = center/totalWeight;
}
void computeSurfaceQuadTree(CInteriorSurface &surface, CSurfaceQuadTree &quad)
{
uint i, j;
CAABBox box;
bool first = true;
for (i=0; i<surface.Faces.size(); ++i)
{
for (j=0; j<3; ++j)
{
const CVector &v = surface.CollisionMeshBuild->Vertices[surface.CollisionMeshBuild->Faces[surface.Faces[i]].V[j]];
if (first)
box.setCenter(v), first=false;
else
box.extend(v);
}
}
quad.clear();
quad.init(4.0f, 6, box.getCenter(), std::max(box.getHalfSize().x, box.getHalfSize().y));
for (i=0; i<surface.Faces.size(); ++i)
{
for (j=0; j<3; ++j)
{
const CVector &v = surface.CollisionMeshBuild->Vertices[surface.CollisionMeshBuild->Faces[surface.Faces[i]].V[j]];
quad.addVertex(v);
}
}
quad.compile();
}
void buildSurfaces(CCollisionMeshBuild &cmb, CLocalRetriever &lr)
{
vector<CInteriorSurface> surfaces;
vector<CInteriorBorder> borders;
floodFillSurfaces(cmb, surfaces);
resetEdgeFlags(cmb);
uint surf, bord;
for (surf=0; surf<surfaces.size(); ++surf)
{
CSurfaceQuadTree quad;
computeSurfaceBorders(surfaces[surf], borders);
computeSurfaceCenter(surfaces[surf]);
computeSurfaceQuadTree(surfaces[surf], quad);
lr.addSurface(0, 0, (uint8)surfaces[surf].Material, 0, 0, false, 0.0f, false, surfaces[surf].Center, quad);
//lr.addSurface(0, 0, (uint8)surfaces[surf].Material, 0, 0, false, 0.0f, /*false,*/ surfaces[surf].Center, quad);
}
sint numBorderChains = 0;
for (bord=0; bord<borders.size(); ++bord)
{
sint32 left = borders[bord].Left;
sint32 right = (borders[bord].Right == -2) ? CChain::convertBorderChainId(numBorderChains++) : borders[bord].Right;
if (left<0 || left>=(sint)surfaces.size() ||
right>(sint)surfaces.size())
nlstop;
lr.addChain(borders[bord].Vertices, left, right);
}
}
//
void buildSnapping(CCollisionMeshBuild &cmb, CLocalRetriever &lr)
{
// copy the vertices
lr.getInteriorVertices() = cmb.Vertices;
// create the faces
uint i;
vector<CLocalRetriever::CInteriorFace> &faces = lr.getInteriorFaces();
for (i=0; i<cmb.Faces.size(); ++i)
{
faces.push_back(CLocalRetriever::CInteriorFace());
faces.back().Verts[0] = cmb.Faces[i].V[0];
faces.back().Verts[1] = cmb.Faces[i].V[1];
faces.back().Verts[2] = cmb.Faces[i].V[2];
faces.back().Surface = cmb.Faces[i].InternalSurface;
}
// create the face grid
lr.initFaceGrid();
}
//
// functions to build local retrievers
//
void buildExteriorMesh(CCollisionMeshBuild &cmb, CExteriorMesh &em)
{
// find the first non interior face
uint i,
edge = 0;
vector<CExteriorMesh::CEdge> edges;
uint numLink = 0;
for (i=0; i<cmb.Faces.size(); ++i)
{
cmb.Faces[i].EdgeFlags[0] = false;
cmb.Faces[i].EdgeFlags[1] = false;
cmb.Faces[i].EdgeFlags[2] = false;
}
i = 0;
for(;;)
{
bool found = false;
for (; i<cmb.Faces.size() && !found; ++i)
{
if (cmb.Faces[i].Surface != CCollisionFace::ExteriorSurface)
continue;
for (edge=0; edge<3 && !found; ++edge)
if (cmb.Faces[i].Edge[edge] == -1 && !cmb.Faces[i].EdgeFlags[edge])
{
found = true;
break;
}
if (found)
break;
}
//
if (!found)
break;
sint32 current = i;
sint32 next = cmb.Faces[current].Edge[edge];
sint oedge;
sint pivot = (edge+1)%3;
sint nextEdge = edge;
uint firstExtEdge = edges.size();
for(;;)
{
if (cmb.Faces[current].EdgeFlags[nextEdge])
{
// if reaches the end of the border, then quits.
break;
}
else if (next == -1)
{
// if the next edge belongs to the border, then go on the same element
cmb.Faces[current].EdgeFlags[nextEdge] = true;
sint link = (cmb.Faces[current].Visibility[nextEdge]) ? -1 : sint((numLink++));
edges.push_back(CExteriorMesh::CEdge(cmb.Vertices[cmb.Faces[current].V[pivot]], link));
nldebug("border: vertex=%d (%.2f,%.2f,%.2f) link=%d", cmb.Faces[current].V[pivot], cmb.Vertices[cmb.Faces[current].V[pivot]].x, cmb.Vertices[cmb.Faces[current].V[pivot]].y, cmb.Vertices[cmb.Faces[current].V[pivot]].z, link);
pivot = (pivot+1)%3;
nextEdge = (nextEdge+1)%3;
next = cmb.Faces[current].Edge[nextEdge];
}
else
{
// if the next element is inside the surface, then go to the next element
for (oedge=0; oedge<3 && cmb.Faces[next].Edge[oedge]!=current; ++oedge)
;
nlassert(oedge != 3);
current = next;
pivot = (oedge+2)%3;
nextEdge = (oedge+1)%3;
next = cmb.Faces[current].Edge[nextEdge];
}
}
edges.push_back(edges[firstExtEdge]);
edges.back().Link = -2;
}
em.setEdges(edges);
}
//
void linkExteriorToInterior(CLocalRetriever &lr)
{
CExteriorMesh em = lr.getExteriorMesh();
vector<CExteriorMesh::CEdge> edges = em.getEdges();
vector<CExteriorMesh::CLink> links;
const vector<CChain> &chains = lr.getChains();
const vector<COrderedChain3f> &ochains = lr.getFullOrderedChains();
const vector<uint16> &bchains = lr.getBorderChains();
{
uint i;
for (i=0; i<bchains.size(); ++i)
{
static char buf[512], w[256];
const CChain &chain = chains[bchains[i]];
sprintf(buf, "chain=%d ", bchains[i]);
uint och;
for (och=0; och<chain.getSubChains().size(); ++och)
{
const COrderedChain3f &ochain = ochains[chain.getSubChain(och)];
sprintf(w, "subchain=%d", chain.getSubChain(och));
strcat(buf, w);
uint v;
for (v=0; v<ochain.getVertices().size(); ++v)
{
sprintf(w, " (%.2f,%.2f)", ochain[v].x, ochain[v].y);
strcat(buf, w);
}
}
nlinfo("%s", buf);
}
}
uint edge, ch;
for (edge=0; edge+1<edges.size(); ++edge)
{
if (edges[edge].Link == -1)
continue;
CVector start = edges[edge].Start, stop = edges[edge+1].Start;
bool found = false;
for (ch=0; ch<bchains.size() && !found; ++ch)
{
// get the border chain.
//const CChain &chain = chains[bchains[ch]];
const CVector &cstart = lr.getStartVector(bchains[ch]),
&cstop = lr.getStopVector(bchains[ch]);
float d = (start-cstart).norm()+(stop-cstop).norm();
if (d < 1.0e-1f)
{
found = true;
break;
}
}
// create a link
CExteriorMesh::CLink link;
if (!found)
{
nlwarning("in linkInteriorToExterior():");
nlwarning("couldn't find any link to the exterior edge %d!!", edge);
}
else
{
// set it up to point on the chain and surface
link.BorderChainId = uint16(ch);
link.ChainId = bchains[ch];
link.SurfaceId = (uint16)chains[link.ChainId].getLeft();
}
// enlarge the links
if (edges[edge].Link >= (sint)links.size())
links.resize(edges[edge].Link+1);
// if the link already exists, warning
if (links[edges[edge].Link].BorderChainId != 0xFFFF ||
links[edges[edge].Link].ChainId != 0xFFFF ||
links[edges[edge].Link].SurfaceId != 0xFFFF)
{
nlwarning("in linkInteriorToExterior():");
nlwarning("link %d already set!!", edges[edge].Link);
}
// setup the link
links[edges[edge].Link] = link;
}
em.setEdges(edges);
em.setLinks(links);
lr.setExteriorMesh(em);
}
//
bool computeRetriever(CCollisionMeshBuild &cmb, CLocalRetriever &lr, CVector &translation, string &error, bool useCmbTrivialTranslation)
{
// set the retriever
lr.setType(CLocalRetriever::Interior);
// if should use the own cmb bbox, then compute it
if (useCmbTrivialTranslation)
{
translation = cmb.computeTrivialTranslation();
// snap the translation vector to a meter wide grid
translation.x = (float)ceil(translation.x);
translation.y = (float)ceil(translation.y);
translation.z = 0.0f;
}
vector<string> errors;
cmb.link(false, errors);
cmb.link(true, errors);
if (!errors.empty())
{
nlwarning("Edge issues reported !!");
uint i;
error = "";
for (i=0; i<errors.size(); ++i)
error += errors[i]+"\n";
return false;
}
// translate the meshbuild to the local axis
cmb.translate(translation);
// find the exterior mesh border
CExteriorMesh extMesh;
buildExteriorMesh(cmb, extMesh);
lr.setExteriorMesh(extMesh);
// build the surfaces in the local retriever
buildSurfaces(cmb, lr);
// create the snapping faces and vertices
// after the build surfaces because the InternalSurfaceId is filled within buildSurfaces()...
buildSnapping(cmb, lr);
//
lr.computeLoopsAndTips();
lr.findBorderChains();
lr.updateChainIds();
lr.computeTopologies();
lr.unify();
lr.computeCollisionChainQuad();
/*
//
for (i=0; i<lr.getSurfaces().size(); ++i)
lr.dumpSurface(i);
*/
//
linkExteriorToInterior(lr);
// compute the bbox of the retriever
uint i, j;
CAABBox bbox;
bool first = true;
for (i=0; i<extMesh.getEdges().size(); ++i)
if (!first)
bbox.extend(extMesh.getEdge(i).Start);
else
bbox.setCenter(extMesh.getEdge(i).Start), first=false;
for (i=0; i<lr.getOrderedChains().size(); ++i)
for (j=0; j<lr.getOrderedChain(i).getVertices().size(); ++j)
if (!first)
bbox.extend(lr.getOrderedChain(i)[j].unpack3f());
else
bbox.setCenter(lr.getOrderedChain(i)[j].unpack3f()), first=false;
CVector bboxhs = bbox.getHalfSize();
bboxhs.z = 10000.0f;
bbox.setHalfSize(bboxhs);
lr.setBBox(bbox);
return true;
}
} // NLPACS