khanat-opennel-code/code/nel/tools/pacs/build_rbank/build_surf.cpp

1700 lines
40 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include <math.h>
#include <float.h>
#include "nel/misc/types_nl.h"
#include "nel/misc/debug.h"
#include "nel/misc/path.h"
#include "nel/misc/file.h"
#include "nel/misc/plane.h"
#include "nel/misc/triangle.h"
#include "nel/misc/polygon.h"
#include "nel/3d/landscape.h"
#include "nel/3d/zone.h"
#include "nel/3d/mesh.h"
#include "nel/3d/quad_grid.h"
#include "nel/pacs/vector_2s.h"
#include "build_surf.h"
#include <deque>
using namespace std;
using namespace NLMISC;
using namespace NL3D;
// Misc functions...
uint16 getZoneIdByPos(CVector &pos)
{
uint x, y;
const float zdim = 160.0f;
x = (uint)(pos.x/zdim);
y = (uint)(-pos.y/zdim);
return x+y*256;
}
string getZoneNameById(uint16 id)
{
uint x = id%256;
uint y = id/256;
char ych[32];
sprintf(ych,"%d_%c%c", y+1, 'A'+x/26, 'A'+x%26);
return string(ych);
}
uint16 getZoneIdByName(string &name)
{
string upperName = strupr (name);
sint y = 0, x = 0;
const char *str = upperName.c_str();
while (*str != '_')
y = y*10 + *(str++)-'0';
++str;
x = (str[0]-'A')*26+(str[1]-'A');
return (y-1)*256+x;
}
CAABBox getZoneBBoxById(uint16 id)
{
CAABBox bbox;
uint x, y;
const float zdim = 160.0f;
x = id%256;
y = id/256;
bbox.setMinMax(CVector(zdim*x, -zdim*(y+1), -10000.0f),
CVector(zdim*(x+1), -zdim*y, +10000.0f));
return bbox;
}
bool relativeEquals(CVector &a, CVector &b, float epsilon)
{
float n = (a-b).norm();
float r = a.norm();
return (n/r <= epsilon);
}
bool absoluteEquals(CVector &a, CVector &b, float epsilon)
{
float n = (a-b).norm();
return n <= epsilon;
}
inline CVector vmin(const CVector &a, const CVector &b, const CVector &c)
{
return CVector(std::min(a.x, std::min(b.x, c.x)),
std::min(a.y, std::min(b.y, c.y)),
std::min(a.z, std::min(b.z, c.z)));
}
inline CVector vmax(const CVector &a, const CVector &b, const CVector &c)
{
return CVector(std::max(a.x, std::max(b.x, c.x)),
std::max(a.y, std::max(b.y, c.y)),
std::max(a.z, std::max(b.z, c.z)));
}
inline CVector vmin(const CVector &a, const CVector &b)
{
return CVector(std::min(a.x, b.x),
std::min(a.y, b.y),
std::min(a.z, b.z));
}
inline CVector vmax(const CVector &a, const CVector &b)
{
return CVector(std::max(a.x, b.x),
std::max(a.y, b.y),
std::max(a.z, b.z));
}
static sint64 float2Fixed(float f)
{
return (sint64)(floor(f*NLPACS::Vector2sAccuracy));
}
static float fixed2Float(sint64 s)
{
return ((float)s)/NLPACS::Vector2sAccuracy;
}
static void snapAccuracyBit(float &f)
{
f = fixed2Float(float2Fixed(f));
}
static void snapAccuracyBit(CVector &v)
{
snapAccuracyBit(v.x);
snapAccuracyBit(v.y);
snapAccuracyBit(v.z);
}
static CAABBox getSnappedBBox(CVector v0, CVector v1, CVector v2, const CAABBox &bbox)
{
snapAccuracyBit(v0);
snapAccuracyBit(v1);
snapAccuracyBit(v2);
CAABBox box;
box.setCenter(v0);
box.extend(v1);
box.extend(v2);
return box;
}
static float alg2dArea(const CVector &v0, const CVector &v1, const CVector &v2)
{
float ux = v1.x-v0.x,
uy = v1.y-v0.y,
vx = v2.x-v0.x,
vy = v2.y-v0.y;
return ux*vy - uy*vx;
}
static double alg2dArea(const CVectorD &v0, const CVectorD &v1, const CVectorD &v2)
{
double ux = v1.x-v0.x,
uy = v1.y-v0.y,
vx = v2.x-v0.x,
vy = v2.y-v0.y;
return ux*vy - uy*vx;
}
template<class A>
class CHashPtr
{
public:
enum { bucket_size = 4, min_buckets = 8, };
typedef A *ptrA;
size_t operator() (const ptrA &a) const
{
return ((uintptr_t)a)/sizeof(A);
}
bool operator() (const ptrA &a, const ptrA &b) const
{
return (uintptr_t)a < (uintptr_t)b;
}
};
bool isInside(const CPolygon &poly, const NLPACS::CSurfElement &elem)
{
uint i, j;
if (poly.getNumVertices() <= 2)
return false;
CVector pnorm = (poly.Vertices[0]-poly.Vertices[1])^(poly.Vertices[2]-poly.Vertices[1]);
pnorm.normalize();
for (i=0; i<3; ++i)
{
const CVector &v = (*elem.Vertices)[elem.Tri[i]];
bool inside = true;
for (j=0; j<poly.Vertices.size(); ++j)
{
const CVector &v0 = poly.Vertices[j],
&v1 = (j == poly.Vertices.size()-1) ? poly.Vertices[0] : poly.Vertices[j+1];
if ((pnorm^(v1-v0)) * (v-v1) > 0.0f)
{
inside = false;
break;
}
}
if (inside)
return true;
}
return false;
}
/*
*/
class CAABBoxPred
{
public:
bool operator () (const CAABBox &a, const CAABBox &b) const
{
return a.getCenter().z < b.getCenter().z;
}
};
/*
* CSurfElement methods
*
*/
void NLPACS::CSurfElement::computeQuantas(CZoneTessellation *zoneTessel)
{
CVector v0 = (*Vertices)[Tri[0]],
v1 = (*Vertices)[Tri[1]],
v2 = (*Vertices)[Tri[2]];
CVector nv0 = v0,
nv1 = v1,
nv2 = v2;
nv0.z = 0.0f;
nv1.z = 0.0f;
nv2.z = 0.0f;
CVector n = (nv1-nv0) ^ (nv2-nv0);
double hmin = std::min(v0.z, std::min(v1.z, v2.z));
//QuantHeight = ((uint8)(floor((v0.z+v1.z+v2.z)/6.0f)))%255;
QuantHeight = ((uint8)floor(hmin/2.0))%255;
Area = 0.5f*n.norm();
IsValid = (Normal.z > 0.707f);
uint8 bits0 = PrimChecker.get((uint)v0.x, (uint)v0.y);
uint8 bits1 = PrimChecker.get((uint)v1.x, (uint)v1.y);
uint8 bits2 = PrimChecker.get((uint)v2.x, (uint)v2.y);
uint16 ws0 = PrimChecker.index((uint)v0.x, (uint)v0.y);
uint16 ws1 = PrimChecker.index((uint)v1.x, (uint)v1.y);
uint16 ws2 = PrimChecker.index((uint)v2.x, (uint)v2.y);
uint8 bits = bits0|bits1|bits2;
if (bits & CPrimChecker::Include)
{
IsValid = true;
}
if (bits & CPrimChecker::Exclude)
{
ForceInvalid = true;
IsValid = false;
}
if (bits & CPrimChecker::ClusterHint && IsValid)
{
ClusterHint = true;
}
// if ((bits & CPrimChecker::Cliff) && (bits & CPrimChecker::Water))
// IsValid = false;
if (Normal.z <= 0.30f)
{
ForceInvalid = true;
IsValid = false;
}
else if ((bits & CPrimChecker::Water) != 0 && !ForceInvalid)
{
bool w0 = ((bits0&CPrimChecker::Water) != 0);
bool w1 = ((bits1&CPrimChecker::Water) != 0);
bool w2 = ((bits2&CPrimChecker::Water) != 0);
uint ws = 0xff;
if ((w0 && w1 && ws0 == ws1) || (w0 && w2 && ws0 == ws2))
ws = ws0;
else if (w1 && w2 && ws1 == ws2)
ws = ws1;
else if (w0)
ws = ws0;
else if (w1)
ws = ws1;
else if (w2)
ws = ws2;
else
{
nlwarning("No WaterShape found for element %d, whereas water detected...", ElemId);
}
WaterShape = ws;
bool exists;
float wh = PrimChecker.waterHeight(ws, exists);
if (exists && ((*Vertices)[Tri[0]].z < wh || (*Vertices)[Tri[1]].z < wh || (*Vertices)[Tri[2]].z < wh))
{
if (bits & CPrimChecker::Cliff)
{
ForceInvalid = true;
IsValid = false;
return;
}
IsValid = true;
WaterShape = ws;
IsUnderWater = true;
}
/*
else
{
ForceInvalid = true;
IsValid = false;
}
*/
}
if (ForceInvalid)
IsValid = false;
}
CAABBox NLPACS::CSurfElement::getBBox() const
{
CAABBox box;
box.setCenter((*Vertices)[Tri[0]]);
box.extend((*Vertices)[Tri[1]]);
box.extend((*Vertices)[Tri[2]]);
return box;
}
/*
* CComputableSurfaceBorder methods implementation
*
*/
void NLPACS::CComputableSurfaceBorder::dump()
{
sint i;
nldebug("dump border between %d and %d", Left, Right);
for (i=0; i<(sint)Vertices.size(); ++i)
{
nldebug(" v[%d]={%g,%g,%g}", i, Vertices[i].x, Vertices[i].y, Vertices[i].z);
}
}
void NLPACS::CComputableSurfaceBorder::smooth(float val)
{
float minArea;
vector<CVector>::iterator it, minIt;
uint i;
uint before, after;
bool allowMoveLeft = (Left != -1);
bool allowMoveRight = (Right != -1);
// filtering passes
uint numPass = 3;
for (; numPass>0 && Vertices.size()>3; --numPass)
{
CVector previous = Vertices[0];
for (i=1; i<Vertices.size()-1; ++i)
{
CVector newVert = (Vertices[i]*2.0+previous+Vertices[i+1])/4.0f;
if (!allowMoveLeft || !allowMoveRight)
{
float area1 = alg2dArea(previous, Vertices[i], Vertices[i+1]);
float area2 = alg2dArea(previous, newVert, Vertices[i+1]);
previous = Vertices[i];
if ((!allowMoveLeft && area2 > area1) || (!allowMoveRight && area2 < area1))
Vertices[i] = newVert;
}
else
{
previous = Vertices[i];
Vertices[i] = newVert;
}
}
}
before = (uint)Vertices.size();
while (Vertices.size()>3) // don't smooth blow 3 vertices to avoid degenrated surfaces
{
minArea = val;
minIt = Vertices.end();
it = Vertices.begin();
++it;
for (i=1; i<Vertices.size()-1; ++i, ++it)
{
float area;
area = 0.5f*((Vertices[i+1]-Vertices[i])^(Vertices[i-1]-Vertices[i])).norm();
if (area < minArea)
{
minArea = area;
minIt = it;
}
}
if (minIt != Vertices.end())
{
Vertices.erase(minIt);
}
else
{
break;
}
}
after = (uint)Vertices.size();
if (Verbose)
nlinfo("smoothed border %d-%d: %d -> %d", Left, Right, before, after);
}
/*
* CComputableSurface methods implementation
*
*/
void NLPACS::CComputableSurface::followBorder(CZoneTessellation *zoneTessel, CSurfElement *first, uint edge, uint sens, vector<CVector> &vstore, bool &loop)
{
CSurfElement *current = first;
CSurfElement *next = current->EdgeLinks[edge];
current->EdgeFlag[edge] = true;
const sint32 currentSurfId = current->SurfaceId;
const sint32 oppositeSurfId = (next != NULL) ? next->SurfaceId : UnaffectedSurfaceId;
const sint32 oppositeZid = current->getZoneIdOnEdge(edge);
sint oedge;
sint pivot = (edge+sens)%3;
sint nextEdge = edge;
bool allowThis = true;
// adds the pivot to the border and its normal
vstore.push_back((*current->Vertices)[current->Tri[pivot]]);
uint loopCount = 0;
while (true)
{
++loopCount;
current->IsBorder = true;
if (((oppositeSurfId != UnaffectedSurfaceId) && (next == NULL || (next->SurfaceId != oppositeSurfId && next->SurfaceId != currentSurfId))) ||
((oppositeSurfId == UnaffectedSurfaceId) && ((next != NULL && next->SurfaceId != currentSurfId) || (next == NULL && current->getZoneIdOnEdge(nextEdge) != oppositeZid))) ||
((current->EdgeFlag[nextEdge] || (zoneTessel->VerticesFlags[current->Tri[pivot]]!=0)) && !allowThis))
{
// if reaches the end of the border, then quits.
loop = (absoluteEquals(vstore.front(), vstore.back(), 1e-2f) && loopCount != 1);
break;
}
else if ((oppositeSurfId != UnaffectedSurfaceId && next->SurfaceId == oppositeSurfId) ||
(oppositeSurfId == UnaffectedSurfaceId && next == NULL))
{
// if the next edge belongs to the border, then go on the same element
current->EdgeFlag[nextEdge] = true;
if (oppositeSurfId != UnaffectedSurfaceId)
{
for (oedge=0; oedge<3 && next->EdgeLinks[oedge]!=current; ++oedge)
;
nlassert(oedge != 3);
nlassert(allowThis || !next->EdgeFlag[oedge]);
next->EdgeFlag[oedge] = true;
}
pivot = (pivot+sens)%3;
nextEdge = (nextEdge+sens)%3;
next = current->EdgeLinks[nextEdge];
vstore.push_back((*current->Vertices)[current->Tri[pivot]]);
}
else
{
// if the next element is inside the surface, then go to the next element
nlassert(next->SurfaceId == currentSurfId);
for (oedge=0; oedge<3 && next->EdgeLinks[oedge]!=current; ++oedge)
;
nlassert(oedge != 3);
current = next;
pivot = (oedge+3-sens)%3;
nextEdge = (oedge+sens)%3;
next = current->EdgeLinks[nextEdge];
}
allowThis = false;
}
}
void NLPACS::CComputableSurface::buildBorders(CZoneTessellation *zoneTessel)
{
sint elem, edge;
if (Verbose)
nlinfo("generate borders for the surface %d (%d elements) - water=%d", SurfaceId, Elements.size(), (IsUnderWater ? 1 : 0));
for (elem=0; elem<(sint)Elements.size(); ++elem)
{
// for each element,
// scan for a edge that points to a different surface
nlassert(Elements[elem]->SurfaceId == SurfaceId);
for (edge=0; edge<3; ++edge)
{
if ((Elements[elem]->EdgeLinks[edge] == NULL || Elements[elem]->EdgeLinks[edge]->SurfaceId != SurfaceId) &&
!Elements[elem]->EdgeFlag[edge])
{
BorderIds.push_back((uint16)BorderKeeper->size());
BorderKeeper->resize(BorderKeeper->size()+1);
CComputableSurfaceBorder &border = BorderKeeper->back();
border.Left = Elements[elem]->SurfaceId;
// ????
//border.DontSmooth = (Elements[elem]->EdgeLinks[edge] != NULL && Elements[elem]->NoLevelSurfaceId == Elements[elem]->EdgeLinks[edge]->SurfaceId);
if (Elements[elem]->EdgeLinks[edge] != NULL && Elements[elem]->EdgeLinks[edge]->ZoneId != Elements[elem]->ZoneId)
{
// link on a neighbor zone
border.Right = -2;
}
if (Elements[elem]->EdgeLinks[edge] == NULL || Elements[elem]->EdgeLinks[edge]->SurfaceId == UnaffectedSurfaceId)
{
// no link at all
border.Right = -1;
}
else
{
border.Right = Elements[elem]->EdgeLinks[edge]->SurfaceId;
}
if (Verbose)
nlinfo("generate border %d (%d-%d)", BorderKeeper->size()-1, border.Left, border.Right);
bool loop;
vector<CVector> bwdVerts;
vector<CVector> &fwdVerts = border.Vertices;
followBorder(zoneTessel, Elements[elem], edge, 2, bwdVerts, loop);
sint i;
fwdVerts.reserve(bwdVerts.size());
fwdVerts.clear();
for (i=(sint)(bwdVerts.size()-1); i>=0; --i)
{
fwdVerts.push_back(bwdVerts[i]);
}
if (loop)
{
fwdVerts.push_back(fwdVerts.front());
}
else
{
fwdVerts.resize(fwdVerts.size()-2);
followBorder(zoneTessel, Elements[elem], edge, 1, fwdVerts, loop);
}
}
}
}
}
bool intersect(const CVectorD& a0, const CVectorD& a1, const CVectorD& b0, const CVectorD& b1, double& pa, double& pb)
{
double ax = +(a1.x-a0.x);
double ay = +(a1.y-a0.y);
double bx = +(b1.x-b0.x);
double by = +(b1.y-b0.y);
double cx = +(b0.x-a0.x);
double cy = +(b0.y-a0.y);
double d = -ax*by + ay*bx;
if (d == 0.0)
return false;
double a = (bx*cy - by*cx) / d;
double b = (ax*cy - ay*cx) / d;
pa = a;
pb = b;
return d != 0.0 && a >= 0.0 && a <= 1.0 && b >= 0.0 && b <= 1.0;
}
// Check Surface Consistency
bool NLPACS::CComputableSurface::checkConsistency()
{
bool success = true;
std::vector<std::pair<NLMISC::CVectorD, NLMISC::CVectorD> > edges;
uint i, j;
for (i=0; i<BorderIds.size(); ++i)
{
CComputableSurfaceBorder& border = (*BorderKeeper)[BorderIds[i]];
for (j=0; j+1<border.Vertices.size(); ++j)
edges.push_back(std::make_pair<NLMISC::CVectorD, NLMISC::CVectorD>(border.Vertices[j], border.Vertices[j+1]));
}
for (i=0; i+1<edges.size(); ++i)
{
for (j=i+1; j<edges.size(); ++j)
{
CVectorD a0 = edges[i].first,
a1 = edges[i].second;
CVectorD b0 = edges[j].first,
b1 = edges[j].second;
double a, b;
bool inters = intersect(a0, a1, b0, b1, a, b);
if (!inters)
continue;
double da = (a1-a0).norm();
double db = (b1-b0).norm();
bool tipa = (fabs(a)*da < 4.0e-2 || fabs(1.0-a)*da < 4.0e-2);
bool tipb = (fabs(b)*db < 4.0e-2 || fabs(1.0-b)*db < 4.0e-2);
if (tipa && tipb)
continue;
success = false;
}
}
return success;
}
/*
* CZoneTessellation constructors and methods implementation
*
*
*
*
*
*
*
*
*
*
*/
bool NLPACS::CZoneTessellation::setup(uint16 zoneId, sint16 refinement, const CVector &translation)
{
CentralZoneId = zoneId;
Refinement = refinement;
// Translation = translation;
// the zone bbox is hard coded for accuracy improvement...
OriginalBBox = getZoneBBoxById(zoneId);
BBox = OriginalBBox;
Translation = -BBox.getCenter();
Translation.x = (float)floor(Translation.x+0.5f);
Translation.y = (float)floor(Translation.y+0.5f);
Translation.z = (float)floor(Translation.z+0.5f);
BBox.setCenter(CVector::Null);
BBox.setHalfSize(CVector(80.0f, 80.0f, BBox.getHalfSize().z));
// if zone doesn't exist, don't even setup tessellation
try
{
if (CPath::lookup(getZoneNameById(zoneId)+ZoneExt, false, false) == "")
return false;
}
catch (const EPathNotFound &)
{
return false;
}
// setup the square of 9 zones...
if (Verbose)
nlinfo("setup zone tessellation %d %s", zoneId, getZoneNameById(zoneId).c_str());
{
sint zx = zoneId%256, zy = zoneId/256;
for (zy=(zoneId/256)-1; zy<=(zoneId/256)+1; ++zy)
{
for (zx=(zoneId%256)-1; zx<=(zoneId%256)+1; ++zx)
{
if (zx >= 0 && zx <= 255 && zy >= 0 && zy <= 255)
{
uint zid = (zy<<8) + (zx);
string filename = getZoneNameById(zid)+ZoneExt;
if (CPath::lookup(filename, false, false) != "")
{
_ZoneIds.push_back(zid);
}
}
}
}
}
// sort zones
sort(_ZoneIds.begin(), _ZoneIds.end());
return true;
}
// ***************************************************************************
void NLPACS::CZoneTessellation::checkSameLandscapeHmBinds(const NL3D::CLandscape &landscape, const NL3D::CLandscape &landscapeNoHm)
{
// For all zones
for (uint i=0; i<_ZoneIds.size(); ++i)
{
uint16 zoneId= _ZoneIds[i];
string zoneName;
CLandscape::buildZoneName(zoneId, zoneName);
// Get the zones
const CZone *zone= landscape.getZone(zoneId);
const CZone *zoneNoHm= landscapeNoHm.getZone(zoneId);
// Check that both are valid, or both are not
if( (zone==NULL) != (zoneNoHm==NULL) )
{
nlwarning("ERROR: The zone %s is %s in the landscape while it is %s in the landscape_with_No_Heightmap",
zoneName.c_str(), zone==NULL?"not present":"present", zoneNoHm==NULL?"not present":"present");
exit(0);
}
// else if both are valid
else if(zone && zoneNoHm)
{
// check same number of patches
uint numPatchs= zone->getNumPatchs();
uint numPatchsNoHm= zoneNoHm->getNumPatchs();
if(numPatchs!=numPatchsNoHm)
{
nlwarning("ERROR: The zone %s has %d Patchs in the landscape while it has %d Patchs in the landscape_with_No_Heightmap",
zoneName.c_str(), numPatchs, numPatchsNoHm);
exit(0);
}
else
{
// Check all binds of all patches
std::vector<string> errors;
errors.reserve(100);
for(uint j=0;j<numPatchs;j++)
{
const CZone::CPatchConnect *patch= zone->getPatchConnect(j);
const CZone::CPatchConnect *patchNoHm= zoneNoHm->getPatchConnect(j);
// Check BaseVertices
for(uint v=0;v<4;v++)
{
if(patch->BaseVertices[v] != patchNoHm->BaseVertices[v])
{
errors.push_back(toString(" The Patch %d has not the same %dth vertex: %d/%d",
j, v, patch->BaseVertices[v], patchNoHm->BaseVertices[v]));
}
}
// Check BindEdges
for(uint b=0;b<4;b++)
{
CPatchInfo::CBindInfo bind= patch->BindEdges[b];
CPatchInfo::CBindInfo bindNoHm= patchNoHm->BindEdges[b];
bool ok= true;
// verify all valid properties only
ok= ok && bind.NPatchs == bindNoHm.NPatchs;
ok= ok && bind.ZoneId == bindNoHm.ZoneId;
uint validNbBinds= min(bind.NPatchs,uint8(4));
for(uint nb=0;nb<validNbBinds;nb++)
{
ok= ok && bind.Next[nb] == bindNoHm.Next[nb];
ok= ok && bind.Edge[nb] == bindNoHm.Edge[nb];
}
// if not ok
if(!ok)
{
// add the error
string error;
error= toString(" The Patch %d that has not the same %dth bindEdge: NumPatchs: %d/%d; ZoneId: %d/%d",
j, b, bind.NPatchs, bindNoHm.NPatchs, bind.ZoneId, bindNoHm.ZoneId);
for(uint nb=0;nb<validNbBinds;nb++)
{
error+= toString("; Edge (%d,%d)/(%d,%d)", bind.Next[nb], bind.Edge[nb], bindNoHm.Next[nb], bindNoHm.Edge[nb]);
}
errors.push_back(error);
}
}
}
// if some error found
if(!errors.empty())
{
// todo: change the way the landscape with heightmap is applied: it should be applied after welding!
// or at least the welding of zones should just keep the same welding as the non heightmapped one
nlwarning("ERROR: The zone %s has a different bind strucutre in the landscape and in the landscape_with_No_Heightmap", zoneName.c_str());
nlwarning("ERROR: Hint: Check your heightmap: it may be too precise or has too much noise, causing the zonewelder to behav differently...");
nlwarning("More Details (information landscape / information landscape_with_No_Heightmap):");
for(uint j=0;j<errors.size();j++)
{
nlwarning("%s", errors[j].c_str());
}
exit(0);
}
}
}
}
}
// ***************************************************************************
void NLPACS::CZoneTessellation::build()
{
sint el;
uint i, j;
NL3D::CLandscape landscape;
landscape.init();
vector<CVector> normals;
vector<CVector> vectorCheck;
bool useNoHmZones = true;
{
NL3D::CLandscape landscapeNoHm;
landscapeNoHm.init();
//
// load the 9 landscape zones
//
for (i=0; i<_ZoneIds.size(); ++i)
{
string filename = getZoneNameById(_ZoneIds[i])+ZoneExt;
CIFile file(CPath::lookup(filename));
CZone zone;
zone.serial(file);
file.close();
if (Verbose)
nlinfo("use zone %s %d", filename.c_str(), zone.getZoneId());
if (zone.getZoneId() != _ZoneIds[i])
{
nlwarning ("Zone %s ID is wrong. Abort.", filename.c_str());
return;
}
landscape.addZone(zone);
if (useNoHmZones)
{
string filenameNH = getZoneNameById(_ZoneIds[i])+ZoneNHExt;
string loadZ = CPath::lookup(filenameNH, false, false);
if (!loadZ.empty())
{
CIFile fileNH(loadZ);
CZone zoneNH;
zoneNH.serial(fileNH);
fileNH.close();
if (zoneNH.getZoneId() != _ZoneIds[i])
{
nlwarning ("Zone %s ID is wrong. Abort.", filenameNH.c_str());
return;
}
landscapeNoHm.addZone(zoneNH);
}
else
{
useNoHmZones = false;
}
}
_ZonePtrs.push_back(landscape.getZone(_ZoneIds[i]));
}
landscape.setNoiseMode(false);
landscape.checkBinds();
if (useNoHmZones)
{
landscapeNoHm.setNoiseMode(false);
landscapeNoHm.checkBinds();
}
BestFittingBBox.setCenter(CVector::Null);
BestFittingBBox.setHalfSize(CVector::Null);
BestFittingBBoxSetuped= false;
// Compute best fitting bbox
for (i=0; i<_ZoneIds.size(); ++i)
{
if (_ZoneIds[i] == CentralZoneId)
{
if(_ZonePtrs[i]->getNumPatchs()>0)
{
BestFittingBBox = _ZonePtrs[i]->getZoneBB().getAABBox();
BestFittingBBoxSetuped= true;
}
}
}
CAABBox enlBBox = BestFittingBBox;
enlBBox.setHalfSize(enlBBox.getHalfSize()+CVector(8.0f, 8.0f, 1000.0f));
// Add neighbor patch
for (i=0; i<_ZoneIds.size(); ++i)
{
if (_ZoneIds[i] == CentralZoneId)
{
for (j=0; (sint)j<_ZonePtrs[i]->getNumPatchs(); ++j)
{
landscape.excludePatchFromRefineAll(_ZoneIds[i], j, false);
if (useNoHmZones)
landscapeNoHm.excludePatchFromRefineAll(_ZoneIds[i], j, false);
}
if (Verbose)
nlinfo(" - selected %d/%d patches for zone %d", _ZonePtrs[i]->getNumPatchs(), _ZonePtrs[i]->getNumPatchs(), _ZoneIds[i]);
}
else
{
uint nump = 0;
for (j=0; (sint)j<_ZonePtrs[i]->getNumPatchs(); ++j)
{
CAABBox pbox = _ZonePtrs[i]->getPatch(j)->buildBBox();
bool inters = enlBBox.intersect(pbox);
if (inters)
{
landscape.excludePatchFromRefineAll(_ZoneIds[i], j, false);
if (useNoHmZones)
landscapeNoHm.excludePatchFromRefineAll(_ZoneIds[i], j, false);
++nump;
}
else
{
landscape.excludePatchFromRefineAll(_ZoneIds[i], j, true);
if (useNoHmZones)
landscapeNoHm.excludePatchFromRefineAll(_ZoneIds[i], j, true);
}
}
if (Verbose)
nlinfo(" - selected %d/%d patches for zone %d", nump, _ZonePtrs[i]->getNumPatchs(), _ZoneIds[i]);
}
}
// tessellate the landscape, get the leaves (the tessellation faces), and convert them
// into surf elements
if (Verbose)
nlinfo("Compute landscape tessellation");
if (Verbose)
nlinfo(" - tessellate landscape");
if (useNoHmZones)
{
// Before tesselate, verify that the 2 landscape zones have at least the same binds!
// Else there will be errors because of not the same tesselation
checkSameLandscapeHmBinds(landscape, landscapeNoHm);
// Tesselate
landscapeNoHm.setThreshold(0.0f);
landscapeNoHm.setTileMaxSubdivision(TessellateLevel);
landscapeNoHm.refineAll(CVector::Null);
landscapeNoHm.averageTesselationVertices();
// get the faces
vector<const CTessFace *> leavesNoHm;
landscapeNoHm.getTessellationLeaves(leavesNoHm);
for (el=0; el<(sint)leavesNoHm.size(); ++el)
{
const CTessFace *face = leavesNoHm[el];
const CVector *v[3];
// get the vertices of the face
v[0] = &(face->VBase->EndPos);
v[1] = &(face->VLeft->EndPos);
v[2] = &(face->VRight->EndPos);
normals.push_back( ((*(v[1])-*(v[0])) ^ (*(v[2])-*(v[0]))).normed() );
vectorCheck.push_back(*(v[0]));
vectorCheck.push_back(*(v[1]));
vectorCheck.push_back(*(v[2]));
}
}
}
// Build the lanscape with heightmap
landscape.setThreshold(0.0f);
landscape.setTileMaxSubdivision(TessellateLevel);
landscape.refineAll(CVector::Null);
landscape.averageTesselationVertices();
vector<const CTessFace *> leaves;
landscape.getTessellationLeaves(leaves);
if (Verbose)
{
if (useNoHmZones)
nlinfo(" - used no height map zones");
nlinfo(" - generated %d leaves", leaves.size());
}
// If don't use NoHm zones, build normals and vectorCheck directly from std landscape
if (!useNoHmZones)
{
for (el=0; el<(sint)leaves.size(); ++el)
{
const CTessFace *face = leaves[el];
const CVector *v[3];
// get the vertices of the face
v[0] = &(face->VBase->EndPos);
v[1] = &(face->VLeft->EndPos);
v[2] = &(face->VRight->EndPos);
normals.push_back( ((*(v[1])-*(v[0])) ^ (*(v[2])-*(v[0]))).normed() );
vectorCheck.push_back(*(v[0]));
vectorCheck.push_back(*(v[1]));
vectorCheck.push_back(*(v[2]));
}
}
// check that there is the same number of faces from landscape with and without heightmap
if (normals.size() != leaves.size())
{
nlwarning ("ERROR : The heightmaped landscape has not the same number of polygon than the nonheightmaped landscape: %d/%d.",
normals.size(), leaves.size());
exit (0);
}
// generate a vector of vertices and of surf element
CHashMap<const CVector *, uint32, CHashPtr<const CVector> > vremap;
CHashMap<const CVector *, uint32, CHashPtr<const CVector> >::iterator vremapit;
CHashMap<const CTessFace *, CSurfElement *, CHashPtr<const CTessFace> > fremap;
CHashMap<const CTessFace *, CSurfElement *, CHashPtr<const CTessFace> >::iterator fremapit;
_Vertices.clear();
_Tessellation.resize(leaves.size());
if (Verbose)
nlinfo(" - make and remap surface elements");
for (el=0; el<(sint)leaves.size(); ++el)
fremap[leaves[el]] = &(_Tessellation[el]);
uint check = 0;
float dist, maxdist = 0.0f;
for (el=0; el<(sint)leaves.size(); ++el)
{
const CTessFace *face = leaves[el];
const CVector *v[3];
CSurfElement &element = _Tessellation[el];
// setup zone id
element.ZoneId = face->Patch->getZone()->getZoneId();
// get the vertices of the face
v[0] = &(face->VBase->EndPos);
v[1] = &(face->VLeft->EndPos);
v[2] = &(face->VRight->EndPos);
{
CVector vcheck;
vcheck = vectorCheck[check++] - *(v[0]);
vcheck.z = 0;
dist = vcheck.norm();
if (dist > maxdist) maxdist = dist;
//nlassert(vcheck.norm() < 0.1f);
vcheck = vectorCheck[check++] - *(v[1]);
vcheck.z = 0;
dist = vcheck.norm();
if (dist > maxdist) maxdist = dist;
//nlassert(vcheck.norm() < 0.1f);
vcheck = vectorCheck[check++] - *(v[2]);
vcheck.z = 0;
dist = vcheck.norm();
if (dist > maxdist) maxdist = dist;
//nlassert(vcheck.norm() < 0.1f);
}
//element.Normal = ((*(v[1])-*(v[0])) ^ (*(v[2])-*(v[0]))).normed();
element.Normal = normals[el];
// search the vertices in the map
for (i=0; i<3; ++i)
{
// if doesn't exist, create a new vertex
if ((vremapit = vremap.find(v[i])) == vremap.end())
{
element.Tri[i] = (uint32)_Vertices.size();
_Vertices.push_back(*(v[i]));
vremap.insert(make_pair(v[i], element.Tri[i]));
}
// else use previous
else
{
element.Tri[i] = vremapit->second;
}
}
// setup the vertices pointer
element.Vertices = &_Vertices;
CTessFace *edge[3];
edge[0] = face->FBase;
edge[1] = face->FRight;
edge[2] = face->FLeft;
for (i=0; i<3; ++i)
{
fremapit = fremap.find(edge[i]);
element.EdgeLinks[i] = (fremapit != fremap.end() ? fremapit->second : NULL);
}
}
for (el=0; el<(sint)_Tessellation.size(); ++el)
{
// add the element to the list of valid elements
Elements.push_back(&(_Tessellation[el]));
}
landscape.clear();
}
void NLPACS::CZoneTessellation::compile()
{
sint el;
uint i;
CAABBox tbox = computeBBox();
bool HasInvertedUnderWater = false;
// setup cliffs
for (el=0; el<(sint)Elements.size(); ++el)
{
CSurfElement &element = *(Elements[el]);
// a cliff ?
if (element.Normal.z < 0.0)
{
CVector &v0 = _Vertices[element.Tri[0]],
&v1 = _Vertices[element.Tri[1]],
&v2 = _Vertices[element.Tri[2]];
uint8 bits0 = PrimChecker.get((uint)v0.x, (uint)v0.y);
uint8 bits1 = PrimChecker.get((uint)v1.x, (uint)v1.y);
uint8 bits2 = PrimChecker.get((uint)v2.x, (uint)v2.y);
bool w0 = ((bits0&CPrimChecker::Water) != 0);
bool w1 = ((bits1&CPrimChecker::Water) != 0);
bool w2 = ((bits2&CPrimChecker::Water) != 0);
if ((bits0 & CPrimChecker::Water)!=0 || (bits1 & CPrimChecker::Water)!=0 || (bits2 & CPrimChecker::Water)!=0)
{
uint ws = 0;
uint16 ws0 = PrimChecker.index((uint)v0.x, (uint)v0.y);
uint16 ws1 = PrimChecker.index((uint)v1.x, (uint)v1.y);
uint16 ws2 = PrimChecker.index((uint)v2.x, (uint)v2.y);
if ((w0 && w1 && ws0 == ws1) || (w0 && w2 && ws0 == ws2))
ws = ws0;
else if (w1 && w2 && ws1 == ws2)
ws = ws1;
else if (w0)
ws = ws0;
else if (w1)
ws = ws1;
else if (w2)
ws = ws2;
float minz = std::min(_Vertices[element.Tri[0]].z,
std::min(_Vertices[element.Tri[1]].z,
_Vertices[element.Tri[2]].z));
bool exists;
float wh = PrimChecker.waterHeight(ws, exists)+WaterThreshold;
//
if (minz <= wh)
{
CPolygon p(v0, v1, v2);
PrimChecker.renderBits(p, CPrimChecker::Cliff);
HasInvertedUnderWater = true;
}
}
}
}
if (HasInvertedUnderWater)
{
nlwarning("zone '%s' has reversed landscape under water", (getZoneNameById((uint16)CentralZoneId)+ZoneExt).c_str());
}
// compute elements features
if (Verbose)
nlinfo("compute elements quantas");
for (el=0; el<(sint)Elements.size(); ++el)
{
CSurfElement &element = *(Elements[el]);
element.ElemId = el;
element.computeQuantas(this);
}
if (ReduceSurfaces)
{
// optimizes the number of generated segments
// it also smoothes a bit the surface border
// it seems that 3 consecutive passes are optimal to reduce
// nasty granularity
if (Verbose)
nlinfo("reduce surfaces");
uint i;
sint p;
for (i=0; i<3; ++i)
{
for (p=0; p<(sint)Elements.size(); ++p)
{
CSurfElement &e = *(Elements[p]);
CSurfElement &e0 = *e.EdgeLinks[0],
&e1 = *e.EdgeLinks[1],
&e2 = *e.EdgeLinks[2];
if (e.IsMergable && &e0 != NULL && &e1 != NULL && &e2 != NULL &&
e.ZoneId == e0.ZoneId &&
e.ZoneId == e1.ZoneId &&
e.ZoneId == e2.ZoneId &&
!e.ForceInvalid)
{
// Strong optimization
// merge the element quantas to the neighbors' quantas which are the most numerous
// quantas are evaluated individually
if (e0.IsValid && e1.IsValid) e.IsValid = true;
if (e1.IsValid && e2.IsValid) e.IsValid = true;
if (e0.IsValid && e2.IsValid) e.IsValid = true;
if (e0.QuantHeight == e1.QuantHeight) e.QuantHeight = e0.QuantHeight;
if (e1.QuantHeight == e2.QuantHeight) e.QuantHeight = e1.QuantHeight;
if (e0.QuantHeight == e2.QuantHeight) e.QuantHeight = e2.QuantHeight;
if (e0.IsValid && e1.IsValid && e0.WaterShape == e1.WaterShape && e0.IsUnderWater == e1.IsUnderWater)
{
e.WaterShape = e0.WaterShape;
e.IsUnderWater = e0.IsUnderWater;
}
if (e1.IsValid && e2.IsValid && e1.WaterShape == e2.WaterShape && e1.IsUnderWater == e2.IsUnderWater)
{
e.WaterShape = e1.WaterShape;
e.IsUnderWater = e1.IsUnderWater;
}
if (e0.IsValid && e2.IsValid && e0.WaterShape == e2.WaterShape && e0.IsUnderWater == e2.IsUnderWater)
{
e.WaterShape = e2.WaterShape;
e.IsUnderWater = e2.IsUnderWater;
}
}
}
}
for (p=0; p<(sint)Elements.size(); ++p)
{
CSurfElement &e = *(Elements[p]);
CSurfElement &e0 = *e.EdgeLinks[0],
&e1 = *e.EdgeLinks[1],
&e2 = *e.EdgeLinks[2];
if (&e != NULL && &e0 != NULL && &e1 != NULL && &e2 != NULL &&
e.IsValid && e0.IsValid && e1.IsValid && e2.IsValid &&
!e.IsUnderWater && e0.IsUnderWater && e1.IsUnderWater && e2.IsUnderWater)
{
nlwarning("isolated submerged element '%d' !", p);
}
}
}
// translates vertices to the local axis
sint64 vx, vy, vz, tx, ty, tz;
tx = float2Fixed(Translation.x);
ty = float2Fixed(Translation.y);
tz = float2Fixed(Translation.z);
uint p;
for (i=0; i<_Vertices.size(); ++i)
{
vx = float2Fixed(_Vertices[i].x) + tx;
vy = float2Fixed(_Vertices[i].y) + ty;
vz = float2Fixed(_Vertices[i].z) + tz;
_Vertices[i] = CVector(fixed2Float(vx), fixed2Float(vy), fixed2Float(vz));
}
if(BestFittingBBoxSetuped)
BestFittingBBox.setCenter(BestFittingBBox.getCenter()+Translation);
//
//if (false)
{
//
// first pass of flood fill
// allow detecting landscape irregularities
//
if (Verbose)
nlinfo("build and flood fill surfaces -- pass 1");
uint32 surfId = 0; // + (ZoneId<<16);
for (p=0; p<Elements.size(); ++p)
{
if (Elements[p]->SurfaceId == UnaffectedSurfaceId)
{
Surfaces.push_back(CComputableSurface());
CComputableSurface &surf = Surfaces.back();
surf.BorderKeeper = &Borders;
surf.floodFill(Elements[p], surfId++, CSurfElemCompareSimple(), this);
surf.BBox = BestFittingBBox;
bool force = false;
if (surf.Area < 30.0f && surf.Elements.size() > 0)
{
uint i;
CAABBox aabbox;
aabbox.setCenter((*surf.Elements[0]->Vertices)[surf.Elements[0]->Tri[0]]);
for (i=0; i<surf.Elements.size(); ++i)
{
aabbox.extend((*surf.Elements[i]->Vertices)[surf.Elements[i]->Tri[0]]);
aabbox.extend((*surf.Elements[i]->Vertices)[surf.Elements[i]->Tri[1]]);
aabbox.extend((*surf.Elements[i]->Vertices)[surf.Elements[i]->Tri[2]]);
}
// swap all suface elements validity
if (!surf.Elements[0]->ForceInvalid && aabbox.getHalfSize().z < 1.5f)
{
for (i=0; i<surf.Elements.size(); ++i)
{
surf.Elements[i]->IsValid = !surf.Elements[i]->IsValid;
}
if (Verbose)
nlinfo("Reverted surface %d (%d elements, water=%d)", surfId-1, surf.Elements.size(), (surf.IsUnderWater ? 1 : 0));
}
}
}
}
Surfaces.clear();
ExtSurfaces.clear();
}
vector<CSurfElement*> elDup;
for (el=0; el<(sint)Elements.size(); ++el)
if (Elements[el]->IsValid)
elDup.push_back(Elements[el]);
Elements = elDup;
elDup.clear();
for (el=0; el<(sint)Elements.size(); ++el)
{
CSurfElement &element = *(Elements[el]);
element.SurfaceId = UnaffectedSurfaceId;
uint i;
for (i=0; i<3; ++i)
if (element.EdgeLinks[i] != NULL && !element.EdgeLinks[i]->IsValid)
element.EdgeLinks[i] = NULL;
}
//
{
if (Verbose)
nlinfo("build and flood fill surfaces");
uint32 surfId = 0; // + (ZoneId<<16);
uint totalSurf = 0;
sint32 extSurf = -1024;
for (p=0; p<Elements.size(); ++p)
{
if (Elements[p]->SurfaceId == UnaffectedSurfaceId)
{
bool elInCentral = (Elements[p]->ZoneId == CentralZoneId);
++totalSurf;
sint32 thisSurfId = (elInCentral) ? surfId++ : extSurf--;
if (elInCentral)
Surfaces.push_back(CComputableSurface());
else
ExtSurfaces.push_back(CComputableSurface());
CComputableSurface &surf = (elInCentral) ? Surfaces.back() : ExtSurfaces.back();
surf.BorderKeeper = &Borders;
surf.floodFill(Elements[p], thisSurfId, CSurfElemCompareNormal(), this);
surf.BBox = BestFittingBBox;
}
}
if (Verbose)
{
nlinfo("%d surfaces generated", totalSurf);
for (p=0; p<Surfaces.size(); ++p)
{
nlinfo("surf %d: %d elements", p, Surfaces[p].Elements.size());
if (Surfaces[p].Elements.size() == 1)
{
nlinfo("elm: %d", Surfaces[p].Elements[0]->ElemId);
}
}
}
}
// flag vertices that are pointed by more than 2 surfaces
VerticesFlags.resize(_Vertices.size(), 0);
for (p=0; p<Elements.size(); ++p)
{
CSurfElement *elem = Elements[p];
sint32 s = elem->SurfaceId;
sint32 s0 = (elem->EdgeLinks[0] != NULL ? elem->EdgeLinks[0]->SurfaceId : UnaffectedSurfaceId);
sint32 s1 = (elem->EdgeLinks[1] != NULL ? elem->EdgeLinks[1]->SurfaceId : UnaffectedSurfaceId);
sint32 s2 = (elem->EdgeLinks[2] != NULL ? elem->EdgeLinks[2]->SurfaceId : UnaffectedSurfaceId);
if (s != s0 && s != s1 && s0 != s1)
{
VerticesFlags[elem->Tri[2]] = 1;
}
if (s != s1 && s != s2 && s1 != s2)
{
VerticesFlags[elem->Tri[0]] = 1;
}
if (s != s2 && s != s0 && s2 != s0)
{
VerticesFlags[elem->Tri[1]] = 1;
}
}
}
void NLPACS::CZoneTessellation::generateBorders(float smooth)
{
sint surf;
if (Verbose)
nlinfo("generate tessellation borders");
// for each surface, build its border
for (surf=0; surf<(sint)Surfaces.size(); ++surf)
Surfaces[surf].buildBorders(this);
// then, for each border, link the related surfaces...
if (Verbose)
nlinfo("smooth borders");
sint border;
sint totalBefore = 0,
totalAfter = 0;
for (border=0; border<(sint)Borders.size(); ++border)
{
CComputableSurfaceBorder& cborder = Borders[border];
sint lsurf = cborder.Left;
sint rsurf = cborder.Right;
if (CheckConsistency)
{
if (lsurf >= 0)
{
CComputableSurface& surf = Surfaces[lsurf];
if (!surf.checkConsistency())
{
nlwarning("Before smooth of border '%d', surface '%d' not consistent", border, lsurf);
}
}
if (rsurf >= 0)
{
CComputableSurface& surf = Surfaces[rsurf];
if (!surf.checkConsistency())
{
nlwarning("Before smooth of border '%d', surface '%d' not consistent", border, rsurf);
}
}
}
float smScale = (Borders[border].Right < 0) ? 0.2f : 1.0f;
uint before = (uint)Borders[border].Vertices.size();
if (SmoothBorders && !Borders[border].DontSmooth)
{
Borders[border].smooth(smooth*smScale);
}
Borders[border].computeLength();
uint after = (uint)Borders[border].Vertices.size();
totalBefore += before;
totalAfter += after;
if (CheckConsistency)
{
if (lsurf >= 0)
{
CComputableSurface& surf = Surfaces[lsurf];
if (!surf.checkConsistency())
{
nlwarning("After smooth of border '%d', surface '%d' not consistent", border, lsurf);
}
}
if (rsurf >= 0)
{
CComputableSurface& surf = Surfaces[rsurf];
if (!surf.checkConsistency())
{
nlwarning("After smooth of border '%d', surface '%d' not consistent", border, rsurf);
}
}
}
}
if (Verbose)
nlinfo("smooth process: %d -> %d (%.1f percent reduction)", totalBefore, totalAfter, 100.0*(1.0-(double)totalAfter/(double)totalBefore));
}
void NLPACS::CZoneTessellation::saveTessellation(COFile &output)
{
output.serialCont(_Vertices);
uint i;
for (i=0; i<_Tessellation.size(); ++i)
_Tessellation[i].ElemId = i;
uint32 numTessel = (uint32)_Tessellation.size();
output.serial(numTessel);
for (i=0; i<_Tessellation.size(); ++i)
{
_Tessellation[i].serial(output, _Tessellation);
}
}
void NLPACS::CZoneTessellation::loadTessellation(CIFile &input)
{
input.serialCont(_Vertices);
uint i;
uint32 numTessel;
input.serial(numTessel);
_Tessellation.resize(numTessel);
for (i=0; i<_Tessellation.size(); ++i)
{
_Tessellation[i].serial(input, _Tessellation);
}
Elements.resize(_Tessellation.size());
for (i=0; i<_Tessellation.size(); ++i)
{
Elements[i] = &_Tessellation[i];
}
}
void NLPACS::CZoneTessellation::clear()
{
_ZoneIds.clear();
_ZonePtrs.clear();
_Tessellation.clear();
_Vertices.clear();
Elements.clear();
Surfaces.clear();
Borders.clear();
}
CAABBox NLPACS::CZoneTessellation::computeBBox() const
{
CAABBox zbox;
bool set = false;
uint i;
if (_Vertices.size() == 0)
return zbox;
zbox.setCenter(_Vertices[0]);
for (i=1; i<_Vertices.size(); ++i)
zbox.extend(_Vertices[i]);
return zbox;
}