khanat-opennel-code/code/nel/include/nel/misc/triangle.h
2010-05-06 02:08:41 +02:00

105 lines
3.1 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef NL_TRIANGLE_H
#define NL_TRIANGLE_H
#include "types_nl.h"
#include "vector.h"
namespace NLMISC
{
class CPlane;
class CMatrix;
}
namespace NLMISC
{
// ***************************************************************************
/**
* A simple triangles of 3 points.
* \author Lionel Berenguier
* \author Nevrax France
* \date 2000
*/
class CTriangle
{
public:
CVector V0,V1,V2;
public:
/// Constructor
CTriangle() {}
/// Constructor
CTriangle(const CVector &a, const CVector &b, const CVector &c) : V0(a), V1(b), V2(c) {}
/**
* Intersection detection with a segment. You must pass the normalized plane of the triangle as parameter.
*
* \param p0 is the first point of the segment.
* \param p1 is the second point of the segment.
* \param hit will receive the coordinate of the intersection if the method returns true.
* \param plane is the plane of the triangle. Build it like this:
* \code
* CPlane plane;
* plane.make (triangle.V0, triangle.V1, triangle.V2);
* \endcode
* \return true if the segement [p0,p1] intersects the triangle else false.
*/
bool intersect (const CVector& p0, const CVector& p1, CVector& hit, const class NLMISC::CPlane& plane) const;
/** 3D Gradient computation.
* Given 3 values at the 3 corners 'ci' (gouraud, uv....), this method compute the gradients Grad.
* The formula to compute the interpolated value according to a 3d position 'v' in space is then simply: \n
* c(v)= c0 + grad*(v-V0)
*/
void computeGradient(float c0, float c1, float c2, CVector &grad) const;
// transform triangle
void applyMatrix(const CMatrix &m, CTriangle &dest) const;
// compute the minimal corner of this triangle
inline void getMinCorner(NLMISC::CVector &dest) const;
// compute the minimal corner of this triangle
inline void getMaxCorner(NLMISC::CVector &dest) const;
};
// inlines
inline void CTriangle::getMinCorner(NLMISC::CVector &dest) const
{
dest.set(minof(V0.x, V1.x, V2.x),
minof(V0.y, V1.y, V2.y),
minof(V0.z, V1.z, V2.z));
}
inline void CTriangle::getMaxCorner(NLMISC::CVector &dest) const
{
dest.set(maxof(V0.x, V1.x, V2.x),
maxof(V0.y, V1.y, V2.y),
maxof(V0.z, V1.z, V2.z));
}
} // NLMISC
#endif // NL_TRIANGLE_H
/* End of triangle.h */