khanat-opennel-code/code/nel/include/nel/3d/particle_system.h
2015-12-25 20:49:59 +01:00

1329 lines
54 KiB
C++

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#ifndef NL_PARTICLE_SYSTEM_H
#define NL_PARTICLE_SYSTEM_H
#include "nel/misc/types_nl.h"
#include "nel/misc/matrix.h"
#include "nel/misc/aabbox.h"
#include "nel/misc/smart_ptr.h"
#include "nel/misc/rgba.h"
#include "nel/misc/object_arena_allocator.h"
#include "nel/3d/animation_time.h"
#include "nel/3d/animation_time.h"
#include "nel/3d/animated_value.h"
#include "nel/3d/particle_system_process.h"
#include "nel/3d/ps_lod.h"
#include "nel/3d/ps_attrib_maker.h"
#include "nel/3d/ps_spawn_info.h"
#include <map>
namespace NL3D
{
class CParticleSystemShape;
class CParticleSystemModel;
class CPSLocated;
class CPSLocatedBindable;
class CFontGenerator;
class CFontManager;
class CPSCopyHelper;
class CScene;
class CPSLocated;
class IDriver;
struct UPSSoundServer;
/// number user params for a particle system
const uint MaxPSUserParam = 4;
/**
* This class holds a particle system. Most of the time it is used with a particle system model.
* See particle_system_shape.h and particle_system_model.h for more details.
* It can be used directly to create a shape.
* If you plan to use this without a particle system model, make sure :
* - you've setup the driver before calls to step()
* - you've setup the font manager if you want to display font information
* \author Nicolas Vizerie
* \author Nevrax France
* \date 2001
*/
class CParticleSystem : public NLMISC::CRefCount
{
public:
PS_FAST_OBJ_ALLOC
// the pass that is applied on particles
enum TPass { Anim, SolidRender, BlendRender, ToolRender };
public:
// *****************************************************************************************************
///\name Object
//@{
/// ctor
CParticleSystem();
/// dtor
virtual ~CParticleSystem();
/// serialize this particle system
void serial(NLMISC::IStream &f) throw(NLMISC::EStream);
/** Merge this system with a system instanciated from the given shape
* NB : This is for edition purpose, this is slow
* \return true if the operation could be performed. It can fail when this cause the system the system to last forever,
* which is incompatible with the 'BypassMaxNumIntegrationSteps' in CParticleSystem.
*/
bool merge(CParticleSystemShape *toMerge);
/*** duplication method NOT SUPPORTED for now (duplication is using streams, but it may not last)
* \param ch for private use, set to null by default
*/
// CParticleSystem *clone(CPSCopyHelper *ch = NULL) ;
//@}
// *****************************************************************************************************
///\name Sharing system
//@{
/** Enable/Disable sharing. When sharing is enabled, the state of a particle system is the same for
* all the system that have the same shape. This allow to gain memory.
* However, such system should not be built with LOD in mind (for example, less emission with distance)
* LOD should be automatic for these system (see Auto-Lod). This means that sharing is only useful for system that
* have the same state, and if they are numerous : motion is performed once, but only for one system with no LOD.
* LOD is done during display only (when activated).
* The default for systems is to have no sharing.
*/
void enableSharing(bool enabled = true) { _Sharing = enabled; }
/// Test whether sharing is enabled
bool isSharingEnabled() const { return _Sharing; }
//@}
// *****************************************************************************************************
///\name Driver setup
//@{
/// set the driver use to render the system
void setDriver(IDriver *driver) { _Driver = driver; }
/// return the driver that will be used for rendering
IDriver *getDriver(void) { return _Driver; }
//@}
// *****************************************************************************************************
///\name Scene setup
//@{
/** Set the scene in which the particle system is inserted. This is needed when
* system must add objects to the scene (for particle that are mesh for instance)
*/
void setScene(CScene *scene) { _Scene = scene; }
//// get the scene set by setScene()
CScene *getScene() const { return _Scene; }
//@}
// *****************************************************************************************************
///\name Position of the system
//@{
/** Hide / show the system
* This just duplicates the 'hiden' flag of matching transform (instance of CParticleSystemModel)
* If the system goes from 'hide' to 'show', then no trails are generated
*/
void hide(bool hidden) { _HiddenAtCurrentFrame = hidden; }
/** Called by owner model, when the visibility of this ps has changed
* (that is, the show / hide flag, not the 'clipped' state)
*/
void onShow(bool shown);
/** Set the matrix for elements with matrixMode == PSFXMatrix.
* NB: The previous matrix position is backuped during this call (used to interpolate the system position during integration),
* so this should be called only once per frame
* NB : pointer to the matrix should remains valid as long as that particle system exists (no copy of the matrix is kept)
*/
void setSysMat(const NLMISC::CMatrix *m);
/** The same as 'setSysMat', but to set the matrix for elements with matrixMode == PSUserMatrix
* NB : pointer to the matrix should remains valid as long as that particle system exists (no copy of the matrix is kept)
*/
void setUserMatrix(const NLMISC::CMatrix *m);
/// return the matrix of the system
const NLMISC::CMatrix &getSysMat() const
{
return _CoordSystemInfo.Matrix ? *_CoordSystemInfo.Matrix : NLMISC::CMatrix::Identity;
}
/// return the inverted matrix of the system
const NLMISC::CMatrix &getInvertedSysMat() const { return _CoordSystemInfo.InvMatrix; }
/** return the user matrix
* NB : to save memory, the user matrix is actually saved when at least one instance of CPSLocated that belongs to the system
* makes a reference on it. This is usually the case when CPSLocated::setMatrixMode(PSUserMatrix) is called.
* If no reference is made, then the fx matrix is returned instead
*/
const NLMISC::CMatrix &getUserMatrix() const
{
NL_PS_FUNC_MAIN(getUserMatrix)
return (_UserCoordSystemInfo && _UserCoordSystemInfo->CoordSystemInfo.Matrix) ? *(_UserCoordSystemInfo->CoordSystemInfo.Matrix) : getSysMat();
}
/** return the inverted user matrix
* NB : to save memory, the user matrix is actually saved when at least one instance of CPSLocated that belongs to the system
* makes a reference on it. This is usually the case when CPSLocated::setMatrixMode(PSUserMatrix) is called.
* If no reference is made, then the inverted system matrix is returned instead.
*/
const NLMISC::CMatrix &getInvertedUserMatrix() const { return (_UserCoordSystemInfo && _UserCoordSystemInfo->CoordSystemInfo.Matrix) ? _UserCoordSystemInfo->CoordSystemInfo.InvMatrix : getInvertedSysMat(); }
// conversion matrix (from user matrix to fx matrix)
const NLMISC::CMatrix &getUserToFXMatrix() const { return (_UserCoordSystemInfo && _UserCoordSystemInfo->CoordSystemInfo.Matrix) ? _UserCoordSystemInfo->UserBasisToFXBasis : NLMISC::CMatrix::Identity; }
// conversion matrix (from fx matrix to user matrix)
const NLMISC::CMatrix &getFXToUserMatrix() const { return (_UserCoordSystemInfo && _UserCoordSystemInfo->CoordSystemInfo.Matrix) ? _UserCoordSystemInfo->FXBasisToUserBasis : NLMISC::CMatrix::Identity; }
/** set the view matrix
* This must be called otherwise results can't be correct
*/
void setViewMat(const NLMISC::CMatrix &m);
/// get the view matrix .
const NLMISC::CMatrix &getViewMat(void) const { return _ViewMat; }
/// get the inverted view matrix . It is stored each time a new frame is processed
const NLMISC::CMatrix &getInvertedViewMat(void) const { return _InvertedViewMat; }
//@}
// *****************************************************************************************************
///\name Execution of the system
//@{
/**
* execute all the process of the system. It uses the driver that was set by a call to setDriver.
* \param ellapsedTime The ellapsed time since the last call
* \param pass the pass to be executed
* \see setDriver
*/
virtual void step(TPass pass, TAnimationTime ellapsedTime, CParticleSystemShape &shape, CParticleSystemModel &model);
//@}
/// used for benchs. must be reset by the user
static uint32 NbParticlesDrawn;
// *****************************************************************************************************
/**\name Process attachment. Most process are located : set of objects of the same type that have a position
* in space
*/
//@{
/** Attach a process (such as a located : see particle_system_process.h, and ps_located.h) to the system.
* It is then owned by the process and will be deleted by it.
* if already present -> nl assert
* \return true if the operation could be performed. It can fail when this cause the system the system to last forever,
* which is incompatible with the 'BypassMaxNumIntegrationSteps' in CParticleSystem
*/
bool attach(CParticleSystemProcess *process);
/** Detach a process from the system (but do not delete it)
*/
CParticleSystemProcess *detach(uint index);
/** Test whether a process is part of this system
*/
bool isProcess(const CParticleSystemProcess *process) const;
/** Given its pointer, return an index to a process.
* The process must be part of the system, otherwise an assertion is raised
*/
uint getIndexOf(const CParticleSystemProcess &process) const;
/** Remove a process
* It is deleted by the system
* if not present -> nl assert
*/
void remove(CParticleSystemProcess *process);
/// get the number of process that are attached to the system
uint32 getNbProcess(void) const { return (uint32)_ProcessVect.size(); }
/**
* Get a pointer to the nth process.
* Out of range -> nlassert
*/
CParticleSystemProcess *getProcess(uint32 index)
{
nlassert(index < _ProcessVect.size());
return _ProcessVect[index];
}
/**
* Get a const pointer to the nth process.
* Out of range -> nlassert
*/
const CParticleSystemProcess *getProcess(uint32 index) const
{
nlassert(index < _ProcessVect.size());
return _ProcessVect[index];
}
//@}
// *****************************************************************************************************
///\name Date / Time
//@{
/// get the time ellapsed since the system was created.
TAnimationTime getSystemDate(void) const { return _SystemDate; }
/// St the time of the system.
void setSystemDate(float date);
/** Get the date of the system (the number of time it has been drawn in fact)
* This may be used to skip frames in an animation for example.
*/
uint64 getDate(void) const
{
NL_PS_FUNC_MAIN(getDate)
return _Date;
}
//@}
// *****************************************************************************************************
/**\name User parameters. They may be or not used by the system. Their meaning is defined during the construction
* of the system
*/
//@{
/** Set the value of a user parameter. It must range from 0 to 1. The user value are not saved, and their default value is 0.f.
* The max number of user param is MaxPSUserParam.
*/
void setUserParam(uint userParamIndex, float value)
{
NL_PS_FUNC_MAIN(setUserParam)
nlassert(userParamIndex < MaxPSUserParam);
NLMISC::clamp(value, 0, MaxInputValue);
_UserParam[userParamIndex] = value;
}
/** Get a user param.
* The max number of user param is in MaxPSUserParam.
*/
float getUserParam(uint userParamIndex) const
{
NL_PS_FUNC_MAIN(getUserParam)
nlassert(userParamIndex < MaxPSUserParam);
return _UserParam[userParamIndex];
}
/** Bind/Unbind a global value to a user param.
* Any further call to setUserParam will then be overriden by the user param.
* Example of use : global strenght of wind.
* \param globalValueName NULL to unbind the value, or the name of the value
*/
void bindGlobalValueToUserParam(const std::string &globalValueName, uint userParamIndex);
// Get name of a global value, or NULL if no global value is bound to that user param
std::string getGlobalValueName(uint userParamIndex) const;
// Set a global value
static void setGlobalValue(const std::string &name, float value);
// Get a global value
static float getGlobalValue(const std::string &name);
/** Set a global vector value. Global vector values are set to (0, 0, 0) by default
* Global vector values are used in some places. For example, direction for a directionnal force.
*/
static void setGlobalVectorValue(const std::string &name, const NLMISC::CVector &value);
// Get a global vector value
static NLMISC::CVector getGlobalVectorValue(const std::string &name);
// define a handle to a global value
class CGlobalVectorValueHandle
{
public:
CGlobalVectorValueHandle() { reset(); }
const NLMISC::CVector &get() const { nlassert(_Value); return *_Value; }
void set(const NLMISC::CVector &value) { nlassert(_Value); *_Value = value; }
const std::string &getName() const { nlassert(_Name); return *_Name; }
bool isValid() const { return _Name != NULL && _Value != NULL; }
void reset() { _Name = NULL; _Value = NULL; }
/////////////////////////////
private:
friend class CParticleSystem;
const std::string *_Name;
NLMISC::CVector *_Value;
};
// Get a handle on a global value that provide a quick access on it (no map lookup)
static CGlobalVectorValueHandle getGlobalVectorValueHandle(const std::string &name);
//@}
// *****************************************************************************************************
///\name Edition methods : provides some tools for an external editor
// @{
/** For edition purposes only : this allow to highlight in red the current element being edited.
* \param located The located the current element belongs to, or NULL if no element is selected.
* \index the index of the element in the located.
* \lb the located bindable that is selected into a located (NULL = all)
*/
void setCurrentEditedElement(CPSLocated *loc = NULL , uint32 index = 0, class CPSLocatedBindable *bd = NULL )
{
NL_PS_FUNC_MAIN(setCurrentEditedElement)
_CurrEditedElementLocated = loc;
_CurrEditedElementLocatedBindable = bd;
_CurrEditedElementIndex = index;
}
/** Retrieve the current edited element
* \see setCurrentEditedElement()
*/
void getCurrentEditedElement(CPSLocated *&loc , uint32 &index, CPSLocatedBindable *&lb)
{
NL_PS_FUNC_MAIN(getCurrentEditedElement)
loc = _CurrEditedElementLocated;
index = _CurrEditedElementIndex;
lb = _CurrEditedElementLocatedBindable;
}
/// Set a font generator. Useful only for edition. don't need that in runtime.
void setFontGenerator(CFontGenerator *fg) { _FontGenerator = fg; }
/// Retrieve the font generator. Edition purpose only.
CFontGenerator *getFontGenerator(void) { return _FontGenerator; }
/// Retrieve the font generator (const version). Edition purpose only.
const CFontGenerator *getFontGenerator(void) const { return _FontGenerator; }
/// Set a font Manager. Useful only for edition. don't need that in runtime
void setFontManager(CFontManager *fg) { _FontManager = fg; }
/// Retrieve the font Manager. Edition purpose only.
CFontManager *getFontManager(void) { return _FontManager; }
/// Retrieve the font Manager (const version). Edition purpose only.
const CFontManager *getFontManager(void) const { return _FontManager; }
// @}
/// Set the name of the system.
void setName(const std::string &s) { _Name = s; }
/// Get the name of the system.
std::string getName(void) const { return _Name; }
// *****************************************************************************************************
///\name Transparency / opacity
// @{
/// returns 'true' if the system has opaque object in it.
bool hasOpaqueObjects(void) const;
/// returns 'true' if the system has transparent objects in it.
bool hasTransparentObjects(void) const;
// @}
// *****************************************************************************************************
///\name Lighting
// @{
/// returns 'true' if the system has lightable objects in it
bool hasLightableObjects() const;
// @}
// *****************************************************************************************************
///\name Integration parameters
// @{
/** This enable for more accurate integrations of movement. When this is activated,
* integration is performed in a more accurate way when the ellapsed time goes over a threshold, but it is more slow to perform.
*/
void enableAccurateIntegration(bool enable = true) { _AccurateIntegration = enable; }
bool isAccurateIntegrationEnabled(void) const { return _AccurateIntegration; }
/** the time threshold and the max number of integration to perform, when accurate integration is activated.
* The default is 0.15 for time threshold and 2 for max NbIntegrations
* \param canSlowDown : Allow the system to slow down in speed but to keep accuracy in its movement.
* It is useful for critical situations where the framerate is very low. The default is true.
*/
void setAccurateIntegrationParams(TAnimationTime threshold,
uint32 maxNbIntegrations,
bool canSlowDown,
bool keepEllapsedTimeForLifeUpdate
)
{
NL_PS_FUNC_MAIN(setAccurateIntegrationParams)
_TimeThreshold = threshold;
_MaxNbIntegrations = maxNbIntegrations;
_CanSlowDown = canSlowDown;
if (_KeepEllapsedTimeForLifeUpdate != keepEllapsedTimeForLifeUpdate)
{
_KeepEllapsedTimeForLifeUpdate = keepEllapsedTimeForLifeUpdate;
_PresetBehaviour = UserBehaviour;
}
}
/** get the parameters used for integration.
* \see setAccurateIntegrationParams()
*/
void getAccurateIntegrationParams(TAnimationTime &threshold,
uint32 &maxNbIntegrations,
bool &canSlowDown,
bool &keepEllapsedTimeForLifeUpdate
)
{
NL_PS_FUNC_MAIN(getAccurateIntegrationParams)
threshold = _TimeThreshold;
maxNbIntegrations = _MaxNbIntegrations;
canSlowDown = _CanSlowDown;
keepEllapsedTimeForLifeUpdate = _KeepEllapsedTimeForLifeUpdate;
}
// get time thrhsold / integration time
float getTimeTheshold() const { return _TimeThreshold; }
/** get max nb integrations
* meaningful only if 'setBypassMaxNumIntegrationSteps' is false
*/
uint getMaxNbIntegrations() const { return _MaxNbIntegrations; }
/** When activated, this bypass the limit on the max number of integration steps
* This should NOT be used on FXs that are looping, because it would slow endlessly
* Anyway if you try to do that an assertion will ocurrs
* Typically, this is useful for spell fx because they are short, and it is important that they don't slow down
* when framerate is too choppy
*/
void setBypassMaxNumIntegrationSteps(bool bypass = true)
{
NL_PS_FUNC_MAIN(setBypassMaxNumIntegrationSteps)
if (_BypassIntegrationStepLimit != bypass)
{
if (bypass)
{
if (!canFinish())
{
nlwarning("<CParticleSystem::setBypassMaxNumIntegrationSteps> Can't set flag to true. The system must have a finite duration");
nlassert(0); // the system can't stop!
return;
}
}
_BypassIntegrationStepLimit = bypass;
_PresetBehaviour = UserBehaviour;
}
}
bool getBypassMaxNumIntegrationSteps() const { return _BypassIntegrationStepLimit; }
/** Test if the system can finish (e.g it doesn't loop, doesn't have emitter with illimited lifetime)
* NB : we assume that all emitters in the system are accessible, e.g that the located graph is connex
* \param lastingForeverObj, if not NULL, the pointer will be filled with the first object that last or emit forever, or create a loop.
*/
bool canFinish(CPSLocatedBindable **lastingForeverObj = NULL) const;
/** Test if there are loops in the system. E.g A emit B emit A
* NB : we assume that all emitters in the system are accessible, e.g that the located graph is connex
* \param loopingObj, if not NULL, will be filled with the first object that creates a loop.
*/
bool hasLoop(CPSLocatedBindable **loopingObj = NULL) const;
// @}
// *****************************************************************************************************
/**\name LOD managment. LOD, when used can be performed in 2 ways :
* - Hand tuned LOD (for emission, color, size : this uses LOD as an input for attribute makers).
* - Auto LOD : - With non-shared systems, it modulates the emission period, quantity etc.. to get the desired result.
* - With shared systems : One version is animated with full LOD (no hand tuned LOD should be applied !).
* All version are displayed with fewer particle than the full LOD, depending on their distance. Visually, this is not as good as hand-tuned system, or auto-LOD on non-shared systems, however ..
*/
// @{
/// set the max view distance for the system (in meters) . The default is 50 meters.
void setMaxViewDist(float maxDist)
{
NL_PS_FUNC_MAIN(setMaxViewDist)
nlassert(maxDist > 0.f);
_MaxViewDist = maxDist;
_InvCurrentViewDist = _InvMaxViewDist = 1.f / maxDist;
}
/// get the max view distance
float getMaxViewDist(void) const { return _MaxViewDist; }
/// set a percentage that indicate where the 2nd LOD is located. Default is 0.5.
void setLODRatio(float ratio) { nlassert(ratio > 0 && ratio <= 1.f); _LODRatio = ratio; }
/// get the lod ratio.
float getLODRatio(void) const { return _LODRatio; }
/** compute a vector and a distance that are used for LOD computations.
* You'll have for a given pos : pos * v + offset = 0 at the nearest point, and 1 when
* pos is at maxDist from the viewer. This is used by sub-component of the system.
*/
void getLODVect(NLMISC::CVector &v, float &offset, TPSMatrixMode matrixMode);
/// get the current LOD of the system. It is based on the distance of the center of the system to the viewer
TPSLod getLOD(void) const;
/// get 1.f - the current lod ratio (it is updated at each motion pass)
float getOneMinusCurrentLODRatio(void) const { return _OneMinusCurrentLODRatio; }
/** Enable / disbale auto-lod.
* When auto-LOD is enabled, less particles are displayed when the system is far.
* This apply to all particles in the systems (unless they override that behaviour).
* The default is AutoLOD off.
*/
void enableAutoLOD(bool enabled = true) { _AutoLOD = enabled; }
/// test whether Auto-LOD is enabled
bool isAutoLODEnabled() const { return _AutoLOD; }
/** Setup auto lod parameters.
* \param start A percentage of the max view dist that tells when the auto-lod must start.
* \param strenght The degradation speed. It is interpreted as an exponent.
*/
void setupAutoLOD(float startDistPercent, uint8 degradationExponent)
{
NL_PS_FUNC_MAIN(setupAutoLOD)
nlassert(startDistPercent < 1.f);
nlassert(degradationExponent > 0);
_AutoLODStartDistPercent = startDistPercent;
_AutoLODDegradationExponent = degradationExponent;
}
/** when auto-lod on a non shared system is used, this set the degradation of the system when it is far
* A value of 0 mean no more emissions at all.
* A value of 0.1 means 10% of emission and so on.
* A value of 1 means there's no LOD at all..
*/
void setMaxDistLODBias(float lodBias);
float getMaxDistLODBias() const { return _MaxDistLODBias; }
float getAutoLODStartDistPercent() const { return _AutoLODStartDistPercent; }
uint8 getAutoLODDegradationExponent() const { return _AutoLODDegradationExponent; }
/** There are 2 modes for the auto-LOD (apply to shared systems only) :
* - Particle are skip in the source container when display is performed (the default)
* - There are just less particles displayed, but this can lead to 'pulse effect'. This is faster, though.
*/
void setAutoLODMode(bool skipParticles) { _AutoLODSkipParticles = skipParticles; }
bool getAutoLODMode() const { return _AutoLODSkipParticles; }
/** Setup a color attenuation scheme with the distance from the viewer. This doesn't act on a particle basis,
* the whole color of the system is changed in an uniform way so it is fast (the same can be achieved on a particle basis).
* This bypass the source of the scheme : it is set to 0 when the system is on the user, and to 1 when
* it is at its max distance.
* \param scheme A color scheme, that is then owned by this object. NULL disable color attenuation. Any previous scheme is removed
*/
void setColorAttenuationScheme(CPSAttribMaker<NLMISC::CRGBA> *colScheme)
{
NL_PS_FUNC_MAIN(setColorAttenuationScheme)
delete _ColorAttenuationScheme;
_ColorAttenuationScheme = colScheme;
if (!colScheme)
{
_GlobalColor = NLMISC::CRGBA::White;
}
}
/// Get the global color attenuation scheme
CPSAttribMaker<NLMISC::CRGBA> *getColorAttenuationScheme() { return _ColorAttenuationScheme; }
const CPSAttribMaker<NLMISC::CRGBA> *getColorAttenuationScheme() const { return _ColorAttenuationScheme; }
/** Set the user color of the system
* Final color is the color due to attenuationByDistance (\see getColorAttenuationScheme() modulated
* by the user color
* NB : that state is not serialized
*/
void setUserColor(NLMISC::CRGBA userColor) { _UserColor = userColor; }
NLMISC::CRGBA getUserColor() const { return _UserColor; }
// shortcut : test il global color is used (not white)
bool isUserColorUsed() const { return _UserColor != NLMISC::CRGBA::White; }
/** Get the current global color of the system. (It is updated just before drawing...). It there's
* no color attenuation scheme it can be assumed to be the same than the user color
*/
NLMISC::CRGBA getGlobalColor() const { return _GlobalColor; }
/** Get the current global color of the system with lighting included.
*/
NLMISC::CRGBA getGlobalColorLighted() const { return _GlobalColorLighted; }
// test if all objects should use global color lighting
bool getForceGlobalColorLightingFlag() { return _ForceGlobalColorLighting; }
// force global color lighting
void setForceGlobalColorLightingFlag(bool enable) { _ForceGlobalColorLighting = enable; }
// set lighting color (used by look at, and object that don't have normals)
void setLightingColor(NLMISC::CRGBA col) { _LightingColor = col; }
NLMISC::CRGBA getLightingColor() const { return _LightingColor; }
// @}
// *****************************************************************************************************
// \name Load balancing
// @{
// get an evaluation of how many tris are needed with the system for the given distance
float getWantedNumTris(float dist);
/// set the number of tree the system may use. If not clled this will be the max
void setNumTris(uint numFaces);
/** Ask for the particle system to reevaluate the max number of faces it may need.
* You don't usually need to call this
*/
//void notifyMaxNumFacesChanged(void);
/// Test whether load balancing has been activated for that system
bool isLoadBalancingEnabled() const { return _EnableLoadBalancing; }
/// Enable / disable load balancing. By default its on
void enableLoadBalancing(bool enabled = true);
// @}
// *****************************************************************************************************
///\name Bounding box managment
// @{
/** Compute the aabbox of this system, (expressed in thesystem basis)
* If the bbox is precomputed, the precomputed bbox is returned
* \param aabbox a ref to the result box
*/
void computeBBox(NLMISC::CAABBox &aabbox);
/** Force computation of current bbox, even if a precomputed bbox has been set
*/
void forceComputeBBox(NLMISC::CAABBox &aabbox);
/** When this is set to false, the system will recompute his bbox each time it is querried
* This may be needed for systems that move fast.
*/
void setAutoComputeBBox(bool enable = true) { _ComputeBBox = enable; }
/// test whether the system compute himself his bbox
bool getAutoComputeBBox(void) const { return _ComputeBBox; }
/** set a precomputed bbox (expressed in the system basis). This is allowed only when setAutoComputeBBox
* is called with false (nlassert otherwise).
*/
void setPrecomputedBBox(const NLMISC::CAABBox &precompBBox)
{
NL_PS_FUNC_MAIN(setPrecomputedBBox)
nlassert(!_ComputeBBox);
_PreComputedBBox = precompBBox;
}
/// get the last computed bbox
void getLastComputedBBox(NLMISC::CAABBox &dest) { dest = _PreComputedBBox; }
// @}
// *****************************************************************************************************
///\name Invalidity flags (no direct effect, just indications for a third party, a model holding the system for example)
// @{
/** Tell the system that it is invalid when its out of range. The default is false.
* This is only a indication flag and must be checked by third party (a model holding the system for example)
*/
void setDestroyModelWhenOutOfRange(bool enable = true)
{
NL_PS_FUNC_MAIN(setDestroyModelWhenOutOfRange)
_DestroyModelWhenOutOfRange = enable;
_PresetBehaviour = UserBehaviour;
}
/// check whether the system is invalid it's out of range.
bool getDestroyModelWhenOutOfRange(void) const { return _DestroyModelWhenOutOfRange; }
/// this enum give consitions on which the system may be invalid
enum TDieCondition { none, noMoreParticles, noMoreParticlesAndEmitters };
/** when != to none, the Model hodling this sytem will be considered invalid when dieCondition is met
* This is only an indication flag and must be checked by third party (a model holding it for example)
* that must then use the right methods
* \see hasEmitters
* \see hasParticles
*/
void setDestroyCondition(TDieCondition dieCondition)
{
NL_PS_FUNC_MAIN(setDestroyCondition)
_DieCondition = dieCondition;
_PresetBehaviour = UserBehaviour;
}
// test if the destroy condition is currently verified
bool isDestroyConditionVerified() const;
/// get the destroy condition
TDieCondition getDestroyCondition(void) const { return _DieCondition; }
/** Set a delay before to apply the death condition test
* This may be necessary : the system could be destroyed because there are no particles, but no particles were emitted yet
*
* This is an indication, and has no direct effect, and must be check by calling isDestroyConditionVerified()
*
* If -1 is set (or a negative value), then the system will compute that delay itself
*
* \see hasEmitters()
* \see hasParticles()
* \see getDelayBeforeDeathConditionTest()
*/
void setDelayBeforeDeathConditionTest(TAnimationTime delay)
{
NL_PS_FUNC_MAIN(setDelayBeforeDeathConditionTest)
_DelayBeforeDieTest = delay;
}
/** Must be called by a sub component of the system to tell that the duration of the system may have changed.
* This can happen typically if :
* - The system structure is changed (located added, merge ..)
* - The lifetime of a located is changed
* - Emitter parameters are modified
* In this case, if the system must stop when there are no particle left, the delay before that test must be recomputed
*/
void systemDurationChanged();
/** Get the a delay before to apply the death condition test
* If the delay was set to -1 or a negative value, this will compute the delay.
*/
TAnimationTime getDelayBeforeDeathConditionTest() const;
/** Tells that the system should recompute the delay before death test itself
* This delay is updated when :
* - The system structure is changed (located added, merge ..)
* - The lifetime of a located is changed
* - Emitter parameters are modified
*/
void setAutoComputeDelayBeforeDeathConditionTest(bool computeAuto);
bool getAutoComputeDelayBeforeDeathConditionTest() const { return _AutoComputeDelayBeforeDeathTest; }
/** tells the model holding this system that he become invalid when its out of the view frustum.
* This is only an indication flag and must be checked by third party (a model holding it for example)
* It has no direct effects
* \see doesDestroyWhenOutOfRange()
*/
void destroyWhenOutOfFrustum(bool enable = true)
{
_DestroyWhenOutOfFrustum = enable;
_PresetBehaviour = UserBehaviour;
}
/** check whether the system must be destroyed when it goes out of the frustum
* \see getDelayBeforeDeathConditionTest()
*/
bool doesDestroyWhenOutOfFrustum(void) const { return _DestroyWhenOutOfFrustum; }
/// return true when there are still emitters in the system
bool hasEmitters(void) const;
/// return true when there are still particles
bool hasParticles() const;
/// return true when there are still temporary particles
bool hasTemporaryParticles() const;
/// This enum tells when animation must be performed
enum TAnimType
{ AnimVisible = 0, /* visible systems only are animated */
AnimInCluster, /* systems that are in cluster are animated */
AnimAlways, /* animate always when not too far */
LastValue
};
/** Deprecated. This set the animation type to AnimInCluster.
* \see setAnimType(TAnimType animType)
*/
void performMotionWhenOutOfFrustum(bool enable = true)
{
NL_PS_FUNC_MAIN(performMotionWhenOutOfFrustum)
_AnimType = enable ? AnimInCluster : AnimVisible;
_PresetBehaviour = UserBehaviour;
}
/** Deprecated. Test if animType == AnimInCluster.
* * \see setAnimType(TAnimType animType)
*/
bool doesPerformMotionWhenOutOfFrustum(void) const { return _AnimType == AnimInCluster; }
/// Tells when animation must be done
void setAnimType(TAnimType animType)
{
NL_PS_FUNC_MAIN(setAnimType)
nlassert(animType < LastValue);
_AnimType = animType;
_PresetBehaviour = UserBehaviour;
}
/// Test what the animation type is
TAnimType getAnimType() const { return _AnimType; }
/** Because choosing the previous parameters can be difficult, this define
* presets hat can be used to tune the system easily.
* Any call to :
* - setDestroyModelWhenOutOfRange
* - setAnimType
* - setDestroyCondition
* - destroyWhenOutOfFrustum
* - performMotionWhenOutOfFrustum
*
* will set the behaviour to 'user'
*/
enum TPresetBehaviour
{
EnvironmentFX = 0, // environment FX, not animated when not visible, persistent.
RunningEnvironmentFX, /* an environment fx that should
* run when in parsed cluster : cascade for example,
* so that it doesn't start when the player first see
* it
*/
SpellFX, // always animated, not persistent, garanteed to match the good frame even if framerate is low
LoopingSpellFX, // alway animated, persistent until emitter are stopped
MinorFX, // animated when visible, discarded when not visible
UserBehaviour,
MovingLoopingFX, // persistent, moving fx
SpawnedEnvironmentFX, // environment fx, not animated when not visible, not persistent
GroundFX, /** usually fx of foot steps (dust clouds etc.). Always animated, persistents, duration of fxs is garanteed,
* but not velocity of particle if framerate is too choppy (usually ok because particle stay in place with those fxs)
*/
Projectile, // like moving looping fx, but not persistent
PresetLast
};
void activatePresetBehaviour(TPresetBehaviour behaviour);
TPresetBehaviour getBehaviourType() const
{
NL_PS_FUNC_MAIN(getBehaviourType)
return _PresetBehaviour;
}
// @}
// *****************************************************************************************************
///\name sound managment
// @{
/// register a Sound server to this system. All systems share the same sound server.
static void registerSoundServer(UPSSoundServer *soundServer);
/// get the current sound server used by this system. NULL if none
static UPSSoundServer * getSoundServer(void)
{
NL_PS_FUNC(getSoundServer)
return _SoundServer;
}
/// immediatly shut down all the sound in this system
void stopSound();
// reactivate all sound in this system
void reactivateSound();
// @}
// *****************************************************************************************************
///\name external access to locatedBindable. PRIVATE PART (to avoid the use of friend)
// @{
/** register a locatedBindable, and allow it to be referenced by the given ID
* this locatedBindable must belong to this system.
* each pair <id, locatedBindable> must be unique, but there may be sevral LB for the same key
*/
void registerLocatedBindableExternID(uint32 id, CPSLocatedBindable *lb);
/// unregister the given located bindable. An assertion is raised if it has not been registered before
void unregisterLocatedBindableExternID(CPSLocatedBindable *lb);
// @}
// *****************************************************************************************************
///\name external access to locatedBindable. PUBLIC PART
// @{
/// return the number the number of located bindable bound with this ID
uint getNumLocatedBindableByExternID(uint32 id) const;
/** return the nth locatedBindable associtaed with this ID.
* \return NULL if it doesn't exist
*/
CPSLocatedBindable *getLocatedBindableByExternID(uint32 id, uint index);
const CPSLocatedBindable *getLocatedBindableByExternID(uint32 id, uint index) const;
/// Get the number of IDs in the system
uint getNumID() const;
/// Get the nth ID, or 0 if index is invalid.
uint32 getID(uint index) const;
/** Get all the IDs in the system.
* \warning As IDs are not internally stored in a vector, it is faster than several calls to getID
*/
void getIDs(std::vector<uint32> &dest) const;
// @}
// *****************************************************************************************************
///\name Misc. options / functions
// @{
/** When using an emitter, it is allowed to have a period of '0'. This special value means that the emitter
* should emit at each frame. This is deprecated now (not framerate independent ..), but some previous systems may use it.
* This option force a minimum period for all emitters.
* NB : the system should be restarted for this to work correctly
* The default is true
*/
void enableEmitThreshold(bool enabled = true) { _EmitThreshold = enabled; }
bool isEmitThresholdEnabled() const { return _EmitThreshold; }
// activate // deactivate all emitters in the system
void activateEmitters(bool active);
// test is there are active emitters in the system
bool hasActiveEmitters() const;
// test if there are emitters in the system (e.g. derivers of CPSEmitter bound to the system)
bool hasEmittersTemplates() const;
/** Eval a duration of the system (duration after which there are no particle lefts).
* It is meaningful only if the system can finish.
* After the given duration particle will have been spawn, and will possibly have finished their life.
* The system may last longer (case where an emitter is triggered when it bounce cannot be evaluated correclty without running the system)
* NB : calling this is costly
*/
float evalDuration() const;
/** Enable/Disable auto-count mode. The default is disabled
* In this mode, when a particle is spawned it is guaranteed to be created. Particle array are resized if necessary for this.
* This helps to tune the size of arrays that contains particle
* This is well adapted for edition, but shouldn't be use at runtime because array are reallocated
* which doesn't give the best performance. It is why that state isn't serialized.
* When the system is modified by the user, he should call resetAutoCount, so that array match the current number of particles.
* This is useful if the user modifiy the system and that the number of particles decreases
*/
void setAutoCountFlag(bool enabled) { _AutoCount = enabled; }
bool getAutoCountFlag() const { return _AutoCount; }
/** Ensure that getMaxSize() == getSize() for each particle array.
* It is usefule for edition, when the system is in auto-count mode
* See setAutoCountFlag
*/
void matchArraySize();
// get max number of individual particles in the system
uint getMaxNumParticles() const;
// get current number of particles in the system
uint getCurrNumParticles() const;
// tool fct : get the list of located that target another located
void getTargeters(const CPSLocated *target, std::vector<CPSTargetLocatedBindable *> &targeters);
// allow to serialize identifiers. The default is false (to speedup instanciation of ps by not creating unecessary strings)
static void setSerializeIdentifierFlag(bool on) { _SerialIdentifiers = on; }
static bool getSerializeIdentifierFlag() { return _SerialIdentifiers; }
// list all textures used by the ps, and append them in the given vector
void enumTexs(std::vector<NLMISC::CSmartPtr<ITexture> > &dest, IDriver &drv);
// Change z-bias of all materials. The z-bias value is given in world coordinates
void setZBias(float value);
// debug : force to display bbox of all particle systems
static void forceDisplayBBox(bool on) { _ForceDisplayBBox = on; }
/** get sorting of the system emitter precedence (it is topological sort of the graph of emitters)
* The result vector contains the index of each process (see getProcess) in order
*/
void getSortingByEmitterPrecedence(std::vector<uint> &result) const;
// @}
private:
typedef std::map<std::string, float> TGlobalValuesMap;
typedef std::map<std::string, NLMISC::CVector> TGlobalVectorValuesMap;
private:
friend class CParticleSystemModel;
/// process a pass on the bound located
void stepLocated(TPSProcessPass pass);
// update the lod & return the distance from viewer
float updateLODRatio();
float getDistFromViewer() const;
void updateColor(float distFromViewer);
void updateNumWantedTris();
// update index of all the process
void updateProcessIndices();
// for debug only
void checkIntegrity();
// map that contain global value that can be affected to user param
static TGlobalValuesMap _GlobalValuesMap;
// map that contain global vector values
static TGlobalVectorValuesMap _GlobalVectorValuesMap;
// A bbox that has been specified by the user
NLMISC::CAABBox _PreComputedBBox;
// the driver used for rendering
IDriver *_Driver;
typedef CPSVector<CParticleSystemProcess *>::V TProcessVect;
TProcessVect _ProcessVect;
CFontGenerator *_FontGenerator;
CFontManager *_FontManager;
// Infos about a coordinate system (current matrix, previous pos...)
class CCoordSystemInfo
{
public:
const NLMISC::CMatrix *Matrix; // gives the matrix to use
NLMISC::CMatrix InvMatrix; // inverted matrix for that coord system
NLMISC::CVector OldPos; // translation part of matrix at previous frame
NLMISC::CVector CurrentDeltaPos; // current pos (for integration step) of the coord system relative to its final pos
public:
CCoordSystemInfo()
{
Matrix = NULL;
}
};
class CUserCoordSystemInfo
{
public:
CCoordSystemInfo CoordSystemInfo;
NLMISC::CMatrix UserBasisToFXBasis; // conversion matrix : from user basis to FX Basis
NLMISC::CMatrix FXBasisToUserBasis; // conversion matrix : from FX basis to user Basis
uint16 NumRef; // number of objects in the system that use position of the user matrix
// because this is used rarely, we allocate memory to track the user matrix position only when needed
public:
CUserCoordSystemInfo()
{
NumRef = 0;
}
};
CCoordSystemInfo _CoordSystemInfo; // coordinate system infos for this fx
CUserCoordSystemInfo *_UserCoordSystemInfo; // coordinate system infos for an hypothetic user matrix
// the view matrix (TODO : this is duplcated from CScene)
NLMISC::CMatrix _ViewMat;
// the inverted view matrix (TODO : this is duplcated from CScene)
NLMISC::CMatrix _InvertedViewMat;
// number of rendered pass on the system, incremented each time the system is redrawn
uint64 _Date;
/// Last update date of the system. Useful with sharing only, to avoid several motions.
sint64 _LastUpdateDate;
// current edited element located (edition purpose only)
CPSLocated *_CurrEditedElementLocated;
// current edited located bindable, NULL means all binadable of a located. (edition purpose only)
CPSLocatedBindable *_CurrEditedElementLocatedBindable;
// current edited element index in its located (edition purpose only)
uint32 _CurrEditedElementIndex;
/** the scene in which the particle system is inserted. This is needed because
* the system may add objects to the scene (for particle that are meshs for instance)
*/
CScene *_Scene;
// contains the name of the system. (VERSION >= 2 only)
std::string _Name;
TAnimationTime _TimeThreshold;
TAnimationTime _SystemDate;
uint32 _MaxNbIntegrations;
float _LODRatio;
float _OneMinusCurrentLODRatio;
float _MaxViewDist;
float _MaxDistLODBias;
float _InvMaxViewDist;
float _InvCurrentViewDist; // inverse of the current view dist. It can be the same than _InvMaxViewDist
// but when there's LOD, the view distance may be reduced
float _AutoLODEmitRatio;
TDieCondition _DieCondition;
mutable TAnimationTime _DelayBeforeDieTest;
uint _NumWantedTris;
TAnimType _AnimType;
static UPSSoundServer *_SoundServer;
float _UserParam[MaxPSUserParam];
const TGlobalValuesMap::value_type **_UserParamGlobalValue; // usually set to NULL unless some user params mirror a global value,
// in this case this contains as many pointer into the global map as there are user params
uint8 _BypassGlobalUserParam; // mask to bypass a global user param. This state is not serialized
TPresetBehaviour _PresetBehaviour;
typedef
CPSMultiMap<uint32, CPSLocatedBindable *>::M TLBMap;
TLBMap _LBMap;
CPSAttribMaker<NLMISC::CRGBA> *_ColorAttenuationScheme;
NLMISC::CRGBA _GlobalColor;
NLMISC::CRGBA _GlobalColorLighted;
NLMISC::CRGBA _LightingColor;
NLMISC::CRGBA _UserColor;
bool _ComputeBBox : 1; /// when set to true, the system will compute his BBox every time computeBBox is called
bool _BBoxTouched : 1;
bool _AccurateIntegration : 1;
bool _CanSlowDown : 1;
bool _DestroyModelWhenOutOfRange : 1;
bool _DestroyWhenOutOfFrustum : 1;
bool _Sharing : 1;
bool _AutoLOD : 1;
bool _KeepEllapsedTimeForLifeUpdate : 1;
bool _AutoLODSkipParticles : 1;
bool _EnableLoadBalancing : 1;
bool _EmitThreshold : 1;
bool _BypassIntegrationStepLimit : 1;
bool _ForceGlobalColorLighting : 1;
bool _AutoComputeDelayBeforeDeathTest : 1;
bool _AutoCount : 1;
bool _HiddenAtCurrentFrame : 1;
bool _HiddenAtPreviousFrame : 1;
// The two following members have been moved after the bitfield to workaround a MSVC 64-bit compiler bug (fixed in VS2013)
// For more info, see: http://connect.microsoft.com/VisualStudio/feedback/details/777184/c-compiler-bug-vtable-pointer-put-at-wrong-offset-in-64-bit-mode
float _AutoLODStartDistPercent;
uint8 _AutoLODDegradationExponent;
static bool _SerialIdentifiers;
static bool _ForceDisplayBBox;
#ifdef NL_DEBUG
static uint _NumInstances;
#endif
public:
// For use by emitters only : This compute a delta of position of the fx matrix to ensure that spawning position are correct when the system moves
void interpolateFXPosDelta(NLMISC::CVector &dest, TAnimationTime deltaT);
// For use by emitters only : This compute a delta of position of the user matrix to ensure that spawning position are correct when the system moves
void interpolateUserPosDelta(NLMISC::CVector &dest, TAnimationTime deltaT);
// For use by emitters only : Get the current emit ratio when auto-LOD is used. Valid only during the 'Emit' pass
float getAutoLODEmitRatio() const { return _AutoLODEmitRatio; }
// For private used by CPSLocated instances : should be called when the matrix mode of a located has changed
void matrixModeChanged(CParticleSystemProcess *proc, TPSMatrixMode oldMode, TPSMatrixMode newMode);
// FOR PRIVATE USE : called when one more object of the system needs the _UserCoordSystemInfo field => so allocate it if needed.
void addRefForUserSysCoordInfo(uint numRefs = 1);
// FOR PRIVATE USE : called when one less object of the system needs the _UserCoordSystemInfo field => deallocate it when there are no references left
void releaseRefForUserSysCoordInfo(uint numRefs = 1);
// tmp for debug : dump hierarchy of fx
void dumpHierarchy();
public:
// spawn info. They are shared by all PS ! This is because there can be only one PS processed at a time in the lib, so no need to store that per instance
typedef std::vector<CPSSpawnInfo> TSpawnInfoVect;
struct CSpawnVect : public NLMISC::CRefCount
{
TSpawnInfoVect SpawnInfos;
uint MaxNumSpawns;
};
static std::vector<NLMISC::CSmartPtr<CSpawnVect> > _Spawns; // for each process of the system (the array is ordered as CParticleSystem::_ProcessVect is) , store a list of particles to spawn. We can't spawn them directly,
// because ageing particle must be processed and removed first to make room
// for new particles and thus avoid a 'pulse' effect when framerate is low or when spawning is fast (see the update loop CParticleSystem::step for details)
// NB : we use a smart pointer to avoid resize of a vector of vector, which is baaad...
// This is public but intended to be used by CPSLocated only.
static std::vector<uint> _ParticleToRemove; // used during the update step, contains the indices of the particles to remove
static std::vector<sint> _ParticleRemoveListIndex; // for each particle, -1 if it hasn't been removed, or else give the insertion number in _ParticleToRemove
static std::vector<uint> _CollidingParticles; // index of particle that collided
static std::vector<NLMISC::CVector> _SpawnPos; // spawn position of newly created particles
public:
// current sim steps infos
static TAnimationTime EllapsedTime;
static TAnimationTime InverseTotalEllapsedTime;
static TAnimationTime RealEllapsedTime;
static float RealEllapsedTimeRatio;
static bool InsideSimLoop;
static bool InsideRemoveLoop;
static bool InsideNewElementsLoop;
static CParticleSystemModel *OwnerModel; // owner model for that system
};
// NOT USED FOR NOW
/**
* This class holds infos needed to duplicate a particle system
* Because of cross referencement, an object of the system may need referencment before it is created
* With map holding pointer to already created object, we can duplicate the system safely
* for now it is for PRIVATE USE...
* may be useful in NLMISC later as it could be used with other kind of objects ...
*/
/*
class CPSCopyHelper
{
public:
// duplicate an object using the copy ctor, if it has not been before
template <class T> T *ctorCopy(const T &src)
{
TCopiedIt it = _Alreadycopied.find(src);
if (it != _AlreadyCopied.end())
{
return (T *) it;
}
else
{
T *result = new T(src);
_AlreadyCopied.insert((void *) result);
return result;
}
}
// duplicate an object using its clone method, if it has not been before
template <class T> T *clone(const T &src)
{
TCopiedIt it = _AlreadyCopied.find(src);
if (it != _AlreadyCopied.end())
{
return (T *) *it;
}
else
{
T *result = src.clone(this);
_AlreadyCopied.insert((void *) result);
return result;
}
}
// insert a value that has been copied by other means
void insert(void *ptr)
{
std::pair<TCopiedIt, bool> result = _AlreadyCopied.insert(ptr);
nlassert(result.second);
}
private:
typedef std::set<void *> TAlreadyCopied;
typedef TAlreadyCopied::iterator TCopiedIt;
TAlreadyCopied _AlreadyCopied;
};
*/
} // NL3D
#endif // NL_PARTICLE_SYSTEM_H
/* End of particle_system.h */