// Ryzom - MMORPG Framework
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
#include "stdpch.h"
#include "server_share/r2_variables.h"
#include "ai_mgr.h"
#include "ai_entity_physical.h"
#include "ai_entity_physical_inline.h"
#include "ai_instance.h"
// critical routine, get backward of weak technical design legacy.
const float repulsCoef=1.f/6.f; // arbitrary
int CAIEntityPhysical::_PlayerVisibilityDistance = 64;
bool CAIEntityPhysical::havePlayersAround() const
{
// todo Sadge: fixme! The correct fix is to handle the vision count mirror field in GPMS
// until then, ring shard swill do much more work than required moving NPCs about
if (IsRingShard)
{
#ifdef NL_DEBUG
nlwarning("FIXME: Quick hack to work round drunken NPC problem");
#endif
return true;
}
TYPE_VISION_COUNTER n = 255-currentVisionCounter();
++AISStat::VisionCtr[n];
if (n==255)
return false;
return n <= _PlayerVisibilityDistance;
}
template <> CKnapsackSolver::Algorithm CTargetable::_TargeterChoiceAlgorithm = CKnapsackSolver::FastSingleReplace;
template <> float const CTargetable::_DefaultFightTargetersWeightMax = 6.f;
template <> float const CTargetable::_DefaultFightWeight = .98f;
template <> float const CTargetable::_DefaultFightValue = 1.f;
CAIEntityPhysicalLocator* CAIEntityPhysicalLocator::_Instance = NULL;
CAIEntityPhysicalLocator* CAIEntityPhysicalLocator::getInstance()
{
if (!_Instance)
_Instance = new CAIEntityPhysicalLocator();
return _Instance;
}
CAIEntityPhysical* CAIEntityPhysicalLocator::getEntity(TDataSetRow const& row) const
{
std::map::const_iterator it = _EntitiesByRow.find(row);
if (it!=_EntitiesByRow.end())
return it->second;
else
return NULL;
}
CAIEntityPhysical* CAIEntityPhysicalLocator::getEntity(NLMISC::CEntityId const& id) const
{
std::map::const_iterator it = _EntitiesById.find(id);
if (it!=_EntitiesById.end())
return it->second;
else
return NULL;
}
void CAIEntityPhysicalLocator::addEntity(TDataSetRow const& row, NLMISC::CEntityId const& id, CAIEntityPhysical* entity)
{
_EntitiesByRow.insert(std::make_pair(row, entity));
_EntitiesById.insert(std::make_pair(id, entity));
}
void CAIEntityPhysicalLocator::delEntity(TDataSetRow const& row, NLMISC::CEntityId const& id, CAIEntityPhysical* entity)
{
_EntitiesById.erase(id);
_EntitiesByRow.erase(row);
}
sint32 CAIEntityPhysical::getFameIndexed(uint32 factionIndex, bool modulated, bool returnUnknownValue) const
{
return CFameInterface::getInstance().getFameIndexed(getEntityId(), factionIndex, modulated, returnUnknownValue);
}
sint32 CAIEntityPhysical::getFame(std::string const& faction, bool modulated, bool returnUnknownValue) const
{
return CFameInterface::getInstance().getFame(getEntityId(), NLMISC::CStringMapper::map(faction), modulated, returnUnknownValue);
}
//////////////////////////////////////////////////////////////////////////////
CModEntityPhysical::CModEntityPhysical(CPersistentOfPhysical& owner, TDataSetRow const& entityIndex, NLMISC::CEntityId const& id, float radius, uint32 level, RYAI_MAP_CRUNCH::TAStarFlag const& AStarFlags)
: CAIEntityPhysical(owner, entityIndex, id, radius, level, AStarFlags)
, _Decalage(0, 0)
{
setMode (MBEHAV::NORMAL);
setBehaviour (MBEHAV::IDLE);
}
inline
CAIVector CModEntityPhysical::calcRepulsionFrom(const CAIVector& pos, const std::vector& entities) const
{
H_AUTO(CalcRepulsionFrom)
const double thisDist=radius()+0.5;
CAIVector repulse;
// collide with entities
FOREACHC(it, std::vector, entities)
{
const CAIEntityPhysical* entityPhysical = *it;
nlassert(entityPhysical != NULL);
CAIVector deltaPos=pos;
deltaPos -=entityPhysical->pos();
const double norm = deltaPos.quickNorm();
const double cmpDist = thisDist+entityPhysical->radius();
if (norm& entities, CAIVector& repulsion) const
{
H_AUTO(CalcStraightRepulsionFrom)
// init the repulsion to (0,0)
repulsion.setXY(0.0, 0.0);
const CAIVector move = pos - this->pos();
const double moveNorm = move.quickNorm();
const double moveAngle = move.asAngle().asRadians();
const double orientation = theta().asRadians();
// collide with entities
FOREACHC(it, std::vector, entities)
{
const CAIEntityPhysical* entityPhysical = *it;
nlassert(entityPhysical != NULL);
CAIVector deltaPos = pos;
deltaPos -= entityPhysical->pos();
const double norm = deltaPos.quickNorm();
const double cmpDist = radius() + entityPhysical->radius() + 0.5;
// if the entity is colliding us
if (norm < cmpDist)
{
// first do a perpendicular repulsion
deltaPos.normalize(float( 1000.0 * (cmpDist - norm) ));
repulsion += deltaPos;
// then add an oriented repulsion
double speedFactor = 1.0;
double repulsionAngle = deltaPos.asAngle().asRadians();
double angle = computeShortestAngle( moveAngle, (-deltaPos).asAngle().asRadians() );
if (angle > -NLMISC::Pi/2 && angle < NLMISC::Pi/2)
{
const double angle1 = NLMISC::Pi/2 - angle;
const double angle2 = -NLMISC::Pi/2 - angle;
const double deviation1 = computeShortestAngle(orientation, repulsionAngle + angle1);
const double deviation2 = computeShortestAngle(orientation, repulsionAngle + angle2);
if (fabs(deviation1) < fabs(deviation2))
{
angle = angle1;
}
else
{
angle = angle2;
}
speedFactor = 1.0 - fabs(angle)/NLMISC::Pi;
repulsionAngle += angle;
deltaPos = CAngle(repulsionAngle).asVector2d() * norm;
}
deltaPos.normalize(float( 1000.0 * speedFactor * (cmpDist - norm) ));
repulsion += deltaPos;
}
}
// now check that the repulsed position does not collide any entity
const CAIVector repulsedPos = pos + repulsion;
FOREACHC(it, std::vector, entities)
{
const CAIEntityPhysical* entityPhysical = *it;
nlassert(entityPhysical != NULL);
CAIVector deltaPos = repulsedPos;
deltaPos -= entityPhysical->pos();
const double norm = deltaPos.quickNorm();
const double cmpDist = radius() + entityPhysical->radius();
if (norm < cmpDist)
{
return false;
}
}
// ok the repulsion is successful
return true;
}
CAIVector CModEntityPhysical::calcRepulsion(const CAIPos& pos) const
{
H_AUTO(CalcRepulsion)
const double thisDist=radius()+0.5;
const double botDist=(double)thisDist+5; // worth case scenario FOR BOTS.
const double humanDist=(double)thisDist+2; // worth case scenario FOR HUMANS.
std::vector nearbyEntities;
{
CAIEntityMatrix::CEntityIteratorLinear it;
// get nearby bots
for (it=getAIInstance()->botMatrix().beginEntities(CAIS::instance().bestLinearMatrixIteratorTbl((uint32) botDist),pos);!it.end();++it)
{
const CAIEntityPhysical* entityPhysical=(*it).getSpawnObj();
if ( entityPhysical
&& entityPhysical->isAlive()
&& entityPhysical!=this)
{
nearbyEntities.push_back(entityPhysical);
}
}
// get nearby players
for (it=getAIInstance()->playerMatrix().beginEntities(CAIS::instance().bestLinearMatrixIteratorTbl((uint32) humanDist),pos);!it.end();++it)
{
const CAIEntityPhysical* entityPhysical=(*it).getSpawnObj();
if ( entityPhysical
&& entityPhysical->isAlive()
&& entityPhysical!=this)
{
nearbyEntities.push_back(entityPhysical);
}
}
}
return calcRepulsionFrom(pos, nearbyEntities);
}
bool CModEntityPhysical::calcStraightRepulsion(CAIPos const& pos, CAIVector& repulsion) const
{
H_AUTO(CalcStraightRepulsion)
const CAIVector move = pos - this->pos();
const double moveNorm = move.quickNorm();
const CAngle moveAngle = move.asAngle();
const double thisDist=radius()+0.5;
const double botDist=(double)thisDist+5; // worth case scenario FOR CREATURES.
const double humanDist=(double)thisDist+2; // worth case scenario FOR HUMANS.
std::vector nonTraversableBots;
std::vector nearbyEntities;
{
CAIEntityMatrix::CEntityIteratorLinear it;
// get nearby bots
for (it=getAIInstance()->botMatrix().beginEntities(CAIS::instance().bestLinearMatrixIteratorTbl((uint32) botDist),pos);!it.end();++it)
{
const CBot* bot = NLMISC::safe_cast(&*it);
const CAIEntityPhysical* entityPhysical = bot->getSpawnObj();
if ( entityPhysical
&& entityPhysical->isAlive()
&& entityPhysical!=this)
{
// if it is a bot object with a significant radius
// TODO: kxu: add a sheet param to recognize these bots that MUST not be crossed by other bots
if ( bot->getSheet()->NotTraversable()
&& entityPhysical->radius() > 1.f
&& entityPhysical->walkSpeed() == 0.f
&& entityPhysical->runSpeed() == 0.f)
{
nonTraversableBots.push_back(entityPhysical);
}
else
{
nearbyEntities.push_back(entityPhysical);
}
}
}
// get nearby players
for (it=getAIInstance()->playerMatrix().beginEntities(CAIS::instance().bestLinearMatrixIteratorTbl((uint32) humanDist),pos);!it.end();++it)
{
const CAIEntityPhysical* entityPhysical=(*it).getSpawnObj();
if ( entityPhysical
&& entityPhysical->isAlive()
&& entityPhysical!=this)
{
nearbyEntities.push_back(entityPhysical);
}
}
}
repulsion = calcRepulsionFrom(pos, nearbyEntities);
// scale the repulsion
// repulsion speed is 71% of movement speed
repulsion.normalize(float( 710.0 * std::max(moveNorm, 0.025) ));
if (nonTraversableBots.empty())
{
return true;
}
CAIVector straightRepulsion;
if (calcStraightRepulsionFrom(repulsion+pos, nonTraversableBots, straightRepulsion))
{
repulsion += straightRepulsion;
return true;
}
// did not find a repulsion without collision
return false;
}
void CModEntityPhysical::setPos(const CAIPos &pos, const RYAI_MAP_CRUNCH::CWorldPosition &wpos)
{
// coherence test.
#ifdef NL_DEBUG
nlassert(RYAI_MAP_CRUNCH::CMapPosition(pos)==wpos);
#endif
_pos.setXY(pos);
_wpos = wpos; // setWPos(wpos); coz no test.
_pos.setH((sint32)(_wpos.getRootCell()?_wpos.getRootCell()->getMetricHeight(_wpos) : 0));
// if we're not linked to the world map then nothing to do
CPersistentOfPhysical &persOfPhys=getPersistent();
if (persOfPhys.isLinkedToWorldMap())
{
CAIInstance* aii = getAIInstance();
persOfPhys.linkEntityToMatrix(pos, aii->botMatrix());
}
}
//////////////////////////////////////////////////////////////////////////////
NLMISC_COMMAND(targeterChoiceAlgorithm,"Set algorithm used to select targeters","[list|]")
{
if(args.size()>1)
return false;
if(args.size()==1)
{
if (args[0]=="list")
{
log.displayNL("Possible algorithms are:");
CKnapsackSolver::Algorithm algorithms[] = {
CKnapsackSolver::Optimal,
// CKnapsackSolver::FullAddCheck,
// CKnapsackSolver::AddCheck,
CKnapsackSolver::FastAddCheck,
// CKnapsackSolver::FullSingleReplace,
// CKnapsackSolver::SingleReplace,
CKnapsackSolver::FastSingleReplace,
CKnapsackSolver::VeryFastSingleReplace
};
size_t algorithmCount = sizeof(algorithms)/sizeof(algorithms[0]);
for (size_t i=0; i::_TargeterChoiceAlgorithm = algorithm;
}
}
log.displayNL("targeterChoiceAlgorithm is %s", CKnapsackSolver::toString(CTargetable::_TargeterChoiceAlgorithm).c_str());
return true;
}
//////////////////////////////////////////////////////////////////////////////
NLMISC_COMMAND(entityPlayerVisibilityDistance,"Set distance (0 to 255) at which entities consider they see a player","")
{
if(args.size()>1)
return false;
if(args.size()==1)
{
sint n;
NLMISC::fromString(args[0], n);
if (n>=0 && n<=255)
CAIEntityPhysical::_PlayerVisibilityDistance = n;
}
log.displayNL("entityPlayerVisibilityDistance is %d",CAIEntityPhysical::_PlayerVisibilityDistance);
return true;
}