// NeL - MMORPG Framework
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see .
#include "std3d.h"
#include "nel/3d/meshvp_per_pixel_light.h"
#include "nel/3d/mesh_base_instance.h"
#include "nel/3d/driver.h"
#include "nel/3d/scene.h"
#include "nel/3d/render_trav.h"
#include "nel/3d/render_trav.h"
#include "nel/3d/vertex_program_parse.h"
#include
namespace NL3D
{
std::auto_ptr CMeshVPPerPixelLight::_VertexProgram[NumVp];
// ***************************************************************************
// Light VP fragment constants start at 24
static const uint VPLightConstantStart = 24;
// ***************************************************************************
// ***************************************************************************
/////////////////
// omni lights //
/////////////////
/** We store the first tangent vector of the tangent space in v[8].
* The third vector can be computed using a cross product.
* We assume that normal and tangent are normalized.
* The position of light must be expressed in object space, and is stored in c[4]
*/
// omni light + specular, no normalization
static const char* PPLightingVPCodeBegin =
"!!VP1.0 \n\
#compute B = N ^ T \n\
MOV R6, v[2]; \n\
MUL R1, R6.yzxw, v[9].zxyw; \n\
MAD R1, v[9].yzxw, -R6.zxyw, R1; \n\
#vector in tangent space = [ T B N ] * L \n\
ADD R2, c[4], -v[0]; # compute L \n\
DP3 R3, R2, R2; # get L normalized \n\
RSQ R3, R3.x; \n\
MUL R2, R3, R2; \n\
DP3 o[TEX0].x, v[9], R2; # get x of light vector in tangent space \n\
DP3 o[TEX0].y, R1, R2; # get y \n\
DP3 o[TEX0].z, R6, R2; # get z \n\
#specular part \n\
ADD R3, c[5], - v[0]; # compute V (return to eye) \n\
#compute inverse norm of V \n\
DP3 R4, R3, R3; \n\
RSQ R4, R4.x; \n\
#we normalize V and add it to L \n\
MAD R2, R4, R3, R2; #H in R1 \n\
\n\
#normalize H \n\
DP3 R3, R2, R2; \n\
RSQ R3, R3.x; \n\
MUL R2, R3, R2; \n\
#compute H in tangent space \n\
DP3 o[TEX2].x, v[9], R2; \n\
DP3 o[TEX2].y, R1, R2; \n\
DP3 o[TEX2].z, R6, R2; \n\
# Position in R5 for additionnal lighting \n\
MOV R5, v[0]; \n\
# Normal is in R6 for additionnal lighting \n\
";
/// The same as above, but for skin / MRM : This normalize the tangent basis.
static const char* PPLightingVPNormalizeCodeBegin =
"!!VP1.0 \n\
#normalize the normal \n\
DP3 R1, v[2], v[2]; \n\
RSQ R1, R1.x; \n\
MUL R6, v[2], R1; \n\
\n\
#normalize the second vector \n\
DP3 R1, R6, v[9]; \n\
MAD R1, R6, -R1, v[9]; #subtract the normal component \n\
DP3 R2, R1, R1; \n\
RSQ R2, R2.x; \n\
MUL R5, R1, R2; #second basis vector in R5 \n\
#compute B = N ^ T \n\
MUL R1, R6.yzxw, R5.zxyw; \n\
MAD R1, R5.yzxw, -R6.zxyw, R1; #third basis vector in R1 \n\
\n\
#vector in tangent space = [ T B N ] * L \n\
ADD R2, c[4], -v[0]; # compute L \n\
DP3 R3, R2, R2; # get L normalized \n\
RSQ R3, R3.x; \n\
MUL R2, R3, R2; \n\
DP3 o[TEX0].x, R5, R2; # get x of light vector in tangent space \n\
DP3 o[TEX0].y, R1, R2; # get y \n\
DP3 o[TEX0].z, R6, R2; # get z \n\
\n\
#specular part \n\
ADD R3, c[5], - v[0]; # compute V (return to eye) \n\
#compute inverse norm of V \n\
DP3 R4, R3, R3; \n\
RSQ R4, R4.x; \n\
#we normalize V and add it to L \n\
MAD R2, R4, R3, R2; #H in R1 \n\
\n\
#normalize H \n\
DP3 R3, R2, R2; \n\
RSQ R3, R3.x; \n\
MUL R2, R3, R2; \n\
#compute H in tangent space \n\
DP3 o[TEX2].x, R5, R2; \n\
DP3 o[TEX2].y, R1, R2; \n\
DP3 o[TEX2].z, R6, R2; \n\
# Position in R5 for additionnal lighting \n\
MOV R5, v[0]; \n\
# Normal is in R6 for additionnal lighting \n\
";
// Omni light, no specular
static const char* PPLightingNoSpecVPCodeBegin =
"!!VP1.0 \n\
#compute B = N ^ T \n\
MOV R6, v[2]; \n\
MUL R1, R6.yzxw, v[9].zxyw; \n\
MAD R1, v[9].yzxw, -R6.zxyw, R1; \n\
\n\
#vector in tangent space = [ T B N ] * L \n\
ADD R2, c[4], -v[0]; # compute L \n\
DP3 R3, R2, R2; # get L normalized \n\
RSQ R3, R3.x; \n\
MUL R2, R3, R2; \n\
DP3 o[TEX0].x, v[9], R2; # get x of light vector in tangent space \n\
DP3 o[TEX0].y, R1, R2; # get y \n\
DP3 o[TEX0].z, R6, R2; # get z \n\
\n\
\n\
# Normal is in R6 for additionnal lighting \n\
# Position in R5 for additionnal lighting \n\
MOV R5, v[0]; \n\
";
/// Omni light with normalization and no specular
static const char* PPLightingVPNormalizeNoSpecCodeBegin =
"!!VP1.0 \n\
#normalize the normal \n\
DP3 R1, v[2], v[2]; \n\
RSQ R1, R1.x; \n\
MUL R6, v[2], R1; \n\
\n\
#normalize the second vector \n\
DP3 R1, R6, v[9]; \n\
MAD R1, R6, -R1, v[9]; #subtract the normal component \n\
DP3 R2, R1, R1; \n\
RSQ R2, R2.x; \n\
MUL R5, R1, R2; #second basis vector in R5 \n\
#compute B = N ^ T \n\
MUL R1, R6.yzxw, R5.zxyw; \n\
MAD R1, R5.yzxw, -R6.zxyw, R1; #third basis vector in R1 \n\
\n\
#vector in tangent space = [ T B N ] * L \n\
ADD R2, c[4], -v[0]; # compute L \n\
DP3 R3, R2, R2; # get L normalized \n\
RSQ R3, R3.x; \n\
MUL R2, R3, R2; \n\
DP3 o[TEX0].x, R5, R2; # get x of light vector in tangent space \n\
DP3 o[TEX0].y, R1, R2; # get y \n\
DP3 o[TEX0].z, R6, R2; # get z \n\
\n\
# Normal is in R6 for additionnal lighting \n\
# Position in R5 for additionnal lighting \n\
MOV R5, v[0]; \n\
";
/////////////////////////
// directionnal lights //
/////////////////////////
/// We store the direction of the light rather than its position
/// The direction must be normalized and expressed in model space.
// directionnal, no normalization
static const char* PPLightingDirectionnalVPCodeBegin =
"!!VP1.0 \n\
#compute B = N ^ T \n\
MOV R6, v[2]; \n\
MUL R1, R6.yzxw, v[9].zxyw; \n\
MAD R1, v[9].yzxw, -R6.zxyw, R1; \n\
\n\
#vector in tangent space = [ T B N ] * L \n\
DP3 o[TEX0].x, v[9], -c[4]; # get x of light vector in tangent space \n\
DP3 o[TEX0].y, R1, -c[4]; # get y \n\
DP3 o[TEX0].z, R6, -c[4]; # get z \n\
\n\
#specular part \n\
ADD R3, c[5], - v[0]; # compute V (return to eye) \n\
#compute inverse norm of V \n\
DP3 R4, R3, R3; \n\
RSQ R4, R4.x; \n\
#we normalize V and add it to L. It gives H unnormalized \n\
MAD R2, R4, R3, -c[4]; #H in R1 \n\
\n\
#normalize H \n\
DP3 R3, R2, R2; \n\
RSQ R3, R3.x; \n\
MUL R2, R3, R2; \n\
#compute H in tangent space \n\
DP3 o[TEX2].x, v[9], R2; \n\
DP3 o[TEX2].y, R1, R2; \n\
DP3 o[TEX2].z, R6, R2; \n\
\n\
# Normal is in R6 for additionnal lighting \n\
# Position in R5 for additionnal lighting \n\
MOV R5, v[0]; \n\
";
// directionnal + normalization
static const char* PPLightingDirectionnalVPNormalizeCodeBegin =
"!!VP1.0 \n\
#normalize the normal \n\
DP3 R1, v[2], v[2]; \n\
RSQ R1, R1.x; \n\
MUL R6, v[2], R1; \n\
\n\
#normalize the second vector \n\
DP3 R1, R6, v[9]; \n\
MAD R1, R6, -R1, v[9]; #subtract the normal component \n\
DP3 R2, R1, R1; \n\
RSQ R2, R2.x; \n\
MUL R5, R1, R2; #second basis vector in R5 \n\
#compute B = N ^ T \n\
MUL R1, R6.yzxw, R5.zxyw; \n\
MAD R1, R5.yzxw, -R6.zxyw, R1; #third basis vector in R1 \n\
\n\
#vector in tangent space = [ T B N ] * L \n\
DP3 o[TEX0].x, R5, -c[4]; # get x of light vector in tangent space \n\
DP3 o[TEX0].y, R1, -c[4]; # get y \n\
DP3 o[TEX0].z, R6, -c[4]; # get z \n\
\n\
#specular part \n\
ADD R3, c[5], - v[0]; # compute V (return to eye) \n\
#compute inverse norm of V \n\
DP3 R4, R3, R3; \n\
RSQ R4, R4.x; \n\
#we normalize V and add it to L \n\
MAD R2, R4, R3, -c[4]; #H in R1 \n\
\n\
#normalize H \n\
DP3 R3, R2, R2; \n\
RSQ R3, R3.x; \n\
MUL R2, R3, R2; \n\
#compute H in tangent space \n\
DP3 o[TEX2].x, R5, R2; \n\
DP3 o[TEX2].y, R1, R2; \n\
DP3 o[TEX2].z, R6, R2; \n\
# Normal is in R6 for additionnal lighting \n\
# Position in R5 for additionnal lighting \n\
MOV R5, v[0]; \n\
";
// directionnal, no normalization, no specular
static const char* PPLightingDirectionnalNoSpecVPCodeBegin =
"!!VP1.0 \n\
#compute B = N ^ T \n\
MOV R6, v[2]; \n\
MUL R1, R6.yzxw, v[9].zxyw; \n\
MAD R1, v[9].yzxw, -R6.zxyw, R1; \n\
\n\
#vector in tangent space = [ T B N ] * L \n\
DP3 o[TEX0].x, v[9], -c[4]; # get x of light vector in tangent space \n\
DP3 o[TEX0].y, R1, -c[4]; # get y \n\
DP3 o[TEX0].z, R6, -c[4]; # get z \n\
# Normal is in R6 for additionnal lighting \n\
# Position in R5 for additionnal lighting \n\
MOV R5, v[0]; \n\
";
// directionnal + normalization, no specular
static const char* PPLightingDirectionnalNoSpecVPNormalizeCodeBegin =
"!!VP1.0 \n\
#normalize the normal \n\
DP3 R1, v[2], v[2]; \n\
RSQ R1, R1.x; \n\
MUL R6, v[2], R1; \n\
\n\
#normalize the second vector \n\
DP3 R1, R6, v[9]; \n\
MAD R1, R6, -R1, v[9]; #subtract the normal component \n\
DP3 R2, R1, R1; \n\
RSQ R2, R2.x; \n\
MUL R5, R1, R2; #second basis vector in R5 \n\
#compute B = N ^ T \n\
MUL R1, R6.yzxw, R5.zxyw; \n\
MAD R1, R5.yzxw, -R6.zxyw, R1; #third basis vector in R1 \n\
\n\
#vector in tangent space = [ T B N ] * L \n\
DP3 o[TEX0].x, R5, -c[4]; # get x of light vector in tangent space \n\
DP3 o[TEX0].y, R1, -c[4]; # get y \n\
DP3 o[TEX0].z, R6, -c[4]; # get z \n\
\n\
# Normal is in R6 for additionnal lighting \n\
# Position in R5 for additionnal lighting \n\
MOV R5, v[0]; \n\
";
// End of per pixel lighting code : compute pos and setup texture
static const char* PPLightingVPCodeEnd=
" # compute in Projection space \n\
DP4 o[HPOS].x, c[0], v[0]; \n\
DP4 o[HPOS].y, c[1], v[0]; \n\
DP4 o[HPOS].z, c[2], v[0]; \n\
DP4 o[HPOS].w, c[3], v[0]; \n\
MOV o[TEX1], v[8]; \n\
END \n\
";
/***************************************************************/
/******************* THE FOLLOWING CODE IS COMMENTED OUT *******/
/***************************************************************
// Test code : map the tangent space vector as the diffuse color
static const char* PPLightingVPCodeTest =
"!!VP1.0 \n\
# compute in Projection space \n\
DP4 o[HPOS].x, c[0], v[0]; \n\
DP4 o[HPOS].y, c[1], v[0]; \n\
DP4 o[HPOS].z, c[2], v[0]; \n\
DP4 o[HPOS].w, c[3], v[0]; \n\
MOV o[COL0], v[9]; \n\
END \n\
";
***************************************************************/
//=================================================================================
void CMeshVPPerPixelLight::initInstance(CMeshBaseInstance *mbi)
{
// init the vertexProgram code.
static bool vpCreated= false;
if(!vpCreated)
{
vpCreated= true;
// Gives each vp name
// Bit 0 : 1 when it is a directionnal light
// Bit 1 : 1 when specular is needed
// Bit 2 : 1 when normalization of the tangent space is needed
static const char *vpName[] =
{
// no spec
PPLightingDirectionnalNoSpecVPCodeBegin,
PPLightingNoSpecVPCodeBegin,
// specular
PPLightingDirectionnalVPCodeBegin,
PPLightingVPCodeBegin,
/////////////// normalized versions
// no spec
PPLightingDirectionnalNoSpecVPNormalizeCodeBegin,
PPLightingVPNormalizeNoSpecCodeBegin,
// spec
PPLightingDirectionnalVPNormalizeCodeBegin,
PPLightingVPNormalizeCodeBegin,
};
uint numvp = sizeof(vpName) / sizeof(const char *);
nlassert(NumVp == numvp); // make sure that it is in sync with header..todo : compile time assert :)
for (uint vp = 0; vp < NumVp; ++vp)
{
// \todo yoyo TODO_OPTIM Manage different number of pointLights
// NB: never call getLightVPFragment() with normalize, because already done by PerPixel fragment before.
std::string vpCode = std::string(vpName[vp])
+ std::string("# ***************") // temp for debug
+ CRenderTrav::getLightVPFragment(CRenderTrav::MaxVPLight-1, VPLightConstantStart, (vp & 2) != 0, false)
+ std::string("# ***************") // temp for debug
+ std::string(PPLightingVPCodeEnd);
#ifdef NL_DEBUG
/** For test : parse those programs before they are used.
* As a matter of fact some program will works with the NV_VERTEX_PROGRAM extension,
* but won't with EXT_vertex_shader, because there are some limitations (can't read a temp
* register that hasn't been written before..)
*/
CVPParser vpParser;
CVPParser::TProgram result;
std::string parseOutput;
if (!vpParser.parse(vpCode.c_str(), result, parseOutput))
{
nlwarning(parseOutput.c_str());
nlassert(0);
}
#endif
_VertexProgram[vp]= std::auto_ptr(new CVertexProgram(vpCode.c_str()));
}
}
}
//=================================================================================
bool CMeshVPPerPixelLight::begin(IDriver *drv,
CScene *scene, CMeshBaseInstance *mbi,
const NLMISC::CMatrix &invertedModelMat,
const NLMISC::CVector &viewerPos)
{
// test if supported by driver
if (!
(drv->isVertexProgramSupported()
&& !drv->isVertexProgramEmulated()
&& drv->supportPerPixelLighting(SpecularLighting)
)
)
{
return false;
}
//
CRenderTrav *renderTrav= &scene->getRenderTrav();
/// Setup for gouraud lighting
renderTrav->beginVPLightSetup(VPLightConstantStart,
SpecularLighting,
invertedModelMat);
//
sint strongestLightIndex = renderTrav->getStrongestLightIndex();
if (strongestLightIndex == -1) return false; // if no strongest light, disable this vertex program
// setup the strongest light
///\todo disabling of specular lighting with this shader
const CLight &strongestLight = renderTrav->getDriverLight(strongestLightIndex);
switch (strongestLight.getMode())
{
case CLight::DirectionalLight:
{
// put light direction in object space
NLMISC::CVector lPos = invertedModelMat.mulVector(strongestLight.getDirection());
drv->setConstant(4, lPos);
_IsPointLight = false;
}
break;
case CLight::PointLight:
{
// put light in object space
NLMISC::CVector lPos = invertedModelMat * strongestLight.getPosition();
drv->setConstant(4, lPos);
_IsPointLight = true;
}
break;
default:
return false;
break;
}
if (SpecularLighting)
{
// viewer pos in object space
NLMISC::CVector vPos = invertedModelMat * viewerPos;
drv->setConstant(5, vPos);
}
// c[0..3] take the ModelViewProjection Matrix. After setupModelMatrix();
drv->setConstantMatrix(0, IDriver::ModelViewProjection, IDriver::Identity);
//
enable(true, drv); // must enable the vertex program before the vb is activated
//
return true;
}
//=================================================================================
void CMeshVPPerPixelLight::end(IDriver *drv)
{
enable(false, drv);
}
//=================================================================================
void CMeshVPPerPixelLight::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
(void)f.serialVersion(0);
f.serial(SpecularLighting);
}
//=================================================================================
void CMeshVPPerPixelLight::enable(bool enabled, IDriver *drv)
{
if (enabled != _Enabled)
{
nlassert(drv);
if (enabled)
{
/* for (uint k = 0; k < NumVp; ++k)
{
nlinfo("test vp %d", k);
drv->activeVertexProgram(_VertexProgram[k].get());
} */
uint idVP = (drv->isForceNormalize() ? 4 : 0)
| (SpecularLighting ? 2 : 0)
| (_IsPointLight ? 1 : 0);
//
drv->activeVertexProgram(_VertexProgram[idVP].get());
}
else
{
drv->activeVertexProgram(NULL);
}
_Enabled = enabled;
}
}
//=================================================================================
bool CMeshVPPerPixelLight::setupForMaterial(const CMaterial &mat,
IDriver *drv,
CScene *scene
)
{
bool enabled = (mat.getShader() == CMaterial::PerPixelLighting || mat.getShader() == CMaterial::PerPixelLightingNoSpec);
if (enabled)
{
CRenderTrav *renderTrav= &scene->getRenderTrav();
renderTrav->changeVPLightSetupMaterial(mat, true /* exclude strongest*/);
NLMISC::CRGBA pplDiffuse, pplSpecular;
renderTrav->getStrongestLightColors(pplDiffuse, pplSpecular);
drv->setPerPixelLightingLight(pplDiffuse, pplSpecular, mat.getShininess());
}
bool change = (enabled != _Enabled);
enable(enabled, drv); // enable disable the vertex program (for material that don't have the right shader)
return change;
}
//=================================================================================
void CMeshVPPerPixelLight::setupForMaterial(const CMaterial &mat,
IDriver *drv,
CScene *scene,
CVertexBuffer *vb)
{
if (setupForMaterial(mat, drv, scene)) // a switch from v.p enabled / disabled force to reactivate the vertex buffer.
{
drv->activeVertexBuffer(*vb);
}
}
} // NL3D