khanat-opennel-code/code/nel/src/misc/time_nl.cpp

610 lines
17 KiB
C++
Raw Normal View History

2015-12-18 12:02:31 +00:00
// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "stdmisc.h"
#include "nel/misc/time_nl.h"
#include "nel/misc/sstring.h"
#include "nel/misc/thread.h"
#ifdef NL_OS_WINDOWS
# include <MMSystem.h>
#elif defined (NL_OS_UNIX)
# include <sys/time.h>
# include <unistd.h>
#endif
#ifdef NL_OS_MAC
#include <mach/mach.h>
#include <mach/mach_time.h>
#endif
#ifdef DEBUG_NEW
#define new DEBUG_NEW
#endif
namespace NLMISC
{
namespace {
#ifdef NL_OS_WINDOWS
bool a_HaveQueryPerformance = false;
LARGE_INTEGER a_QueryPerformanceFrequency;
#endif
#ifdef NL_OS_UNIX
# if defined(_POSIX_TIMERS) && (_POSIX_TIMERS > 0)
# if defined(_POSIX_MONOTONIC_CLOCK) && (_POSIX_MONOTONIC_CLOCK >= 0)
# define NL_MONOTONIC_CLOCK
# endif
# endif
# ifdef NL_MONOTONIC_CLOCK
bool a_CheckedMonotonicClock = false;
bool a_HasMonotonicClock = false;
uint64 a_MonotonicClockFrequency = 0;
uint64 a_MonotonicClockResolutionNs = 0;
bool hasMonotonicClock()
{
if (!a_CheckedMonotonicClock)
{
/* Initialize the local time engine.
* On Unix, this method will find out if the Monotonic Clock is supported
* (seems supported by kernel 2.6, not by kernel 2.4). See getLocalTime().
*/
struct timespec tv;
if ((clock_gettime( CLOCK_MONOTONIC, &tv ) == 0) &&
(clock_getres( CLOCK_MONOTONIC, &tv ) == 0))
{
// nldebug( "Monotonic local time supported (resolution %.6f ms)", ((float)tv.tv_sec)*1000.0f + ((float)tv.tv_nsec)/1000000.0f );
if (tv.tv_sec > 0)
{
nlwarning("Monotonic clock not ok, resolution > 1s");
a_HasMonotonicClock = false;
}
else
{
uint64 nsPerTick = tv.tv_nsec;
uint64 nsPerSec = 1000000000L;
uint64 tickPerSec = nsPerSec / nsPerTick;
a_MonotonicClockFrequency = tickPerSec;
a_MonotonicClockResolutionNs = nsPerTick;
a_HasMonotonicClock = true;
}
}
else
{
a_HasMonotonicClock = false;
}
a_CheckedMonotonicClock = true;
}
return a_HasMonotonicClock;
}
# endif
#endif
}
void CTime::probeTimerInfo(CTime::CTimerInfo &result)
{
breakable
{
#ifdef NL_OS_WINDOWS
LARGE_INTEGER winPerfFreq;
LARGE_INTEGER winPerfCount;
DWORD lowResTime;
if (!QueryPerformanceFrequency(&winPerfFreq))
{
nldebug("Cannot query performance frequency");
result.IsHighPrecisionAvailable = false;
}
else
{
result.HighPrecisionResolution = winPerfFreq.QuadPart;
}
if (winPerfFreq.QuadPart == 1000)
{
nldebug("Higher precision timer not available, OS defaulted to GetTickCount");
result.IsHighPrecisionAvailable = false;
}
if (!QueryPerformanceCounter(&winPerfCount))
{
nldebug("Cannot query performance counter");
result.IsHighPrecisionAvailable = false;
result.HighPrecisionResolution = 1000;
}
a_HaveQueryPerformance = result.IsHighPrecisionAvailable;
a_QueryPerformanceFrequency.QuadPart = winPerfFreq.QuadPart;
if (!result.IsHighPrecisionAvailable)
{
lowResTime = timeGetTime();
}
#else
// Other platforms are awesome. Generic implementation for now.
TTime localTime = getLocalTime();
result.IsHighPrecisionAvailable = true;
result.HighPrecisionResolution = 0;
# ifdef NL_MONOTONIC_CLOCK
timespec monoClock;
if (hasMonotonicClock())
{
clock_gettime(CLOCK_MONOTONIC, &monoClock);
result.HighPrecisionResolution = a_MonotonicClockFrequency;
}
else
{
nldebug("Monotonic clock not available");
}
# endif
#endif
uint64 cpuMask = IProcess::getCurrentProcess()->getCPUMask();
#ifdef NL_OS_WINDOWS
uint64 threadMask = IThread::getCurrentThread()->getCPUMask(); // broken on linux, don't expect it to work anywhere
#else
uint64 threadMask = cpuMask;
#endif
uint identical = 0; // Identical stamps may indicate the os handling backwards glitches.
uint backwards = 0; // Happens when the timers are not always in sync and the implementation is faulty.
uint regular = 0; // How many times the number advanced normally.
uint skipping = 0; // Does not really mean anything necessarily.
uint frequencybug = 0; // Should never happen.
// uint badcore = 0; // Affinity does not work.
// Cycle 32 times trough all cores, and verify if the timing remains consistent.
for (uint i = 32; i; --i)
{
uint64 currentBit = 1;
for (uint j = 64; j; --j)
{
if (cpuMask & currentBit)
{
#ifdef NL_OS_WINDOWS
if (!IThread::getCurrentThread()->setCPUMask(currentBit))
#else
if (!IProcess::getCurrentProcess()->setCPUMask(currentBit))
#endif
break; // Thread was set to last cpu.
#ifdef NL_OS_WINDOWS
// Make sure the thread is rescheduled.
SwitchToThread();
Sleep(0);
// Verify the core
/* Can only verify on 2003, Vista and higher.
if (1 << GetCurrentProcessorNumber() != currentBit)
++badcore;
*/
// Check if the timer is still sane.
if (result.IsHighPrecisionAvailable)
{
LARGE_INTEGER winPerfFreqN;
LARGE_INTEGER winPerfCountN;
QueryPerformanceFrequency(&winPerfFreqN);
if (winPerfFreqN.QuadPart != winPerfFreq.QuadPart)
++frequencybug;
QueryPerformanceCounter(&winPerfCountN);
if (winPerfCountN.QuadPart == winPerfCount.QuadPart)
++identical;
if (winPerfCountN.QuadPart < winPerfCount.QuadPart || winPerfCountN.QuadPart - winPerfCount.QuadPart < 0)
++backwards;
if (winPerfCountN.QuadPart - winPerfCount.QuadPart > winPerfFreq.QuadPart / 20) // 50ms skipping check
++skipping;
else if (winPerfCountN.QuadPart > winPerfCount.QuadPart)
++regular;
winPerfCount.QuadPart = winPerfCountN.QuadPart;
}
else
{
DWORD lowResTimeN;
lowResTimeN = timeGetTime();
if (lowResTimeN == lowResTime)
++identical;
if (lowResTimeN < lowResTime || lowResTimeN - lowResTime < 0)
++backwards;
if (lowResTimeN - lowResTime > 50)
++skipping;
else if (lowResTimeN > lowResTime)
++regular;
lowResTime = lowResTimeN;
}
#else
#ifdef NL_OS_UNIX
sched_yield();
#else
nlSleep(0);
#endif
# ifdef NL_MONOTONIC_CLOCK
if (hasMonotonicClock())
{
timespec monoClockN;
clock_gettime(CLOCK_MONOTONIC, &monoClockN);
if (monoClock.tv_sec == monoClockN.tv_sec && monoClock.tv_nsec == monoClockN.tv_nsec)
++identical;
if (monoClockN.tv_sec < monoClock.tv_sec || (monoClock.tv_sec == monoClockN.tv_sec && monoClockN.tv_nsec < monoClock.tv_nsec))
++backwards;
if (monoClock.tv_sec == monoClockN.tv_sec && (monoClockN.tv_nsec - monoClock.tv_nsec > 50000000L))
++skipping;
else if ((monoClock.tv_sec == monoClockN.tv_sec && monoClock.tv_nsec < monoClockN.tv_nsec) || monoClock.tv_sec < monoClockN.tv_sec)
++regular;
monoClock.tv_sec = monoClockN.tv_sec;
monoClock.tv_nsec = monoClockN.tv_nsec;
}
else
# endif
{
TTime localTimeN = getLocalTime();
if (localTimeN == localTime)
++identical;
if (localTimeN < localTime || localTimeN - localTime < 0)
++backwards;
if (localTimeN - localTime > 50)
++skipping;
else if (localTimeN > localTime)
++regular;
localTime = localTimeN;
}
#endif
}
currentBit <<= 1;
}
}
#ifdef NL_OS_WINDOWS
IThread::getCurrentThread()->setCPUMask(threadMask);
#else
IProcess::getCurrentProcess()->setCPUMask(threadMask);
#endif
nldebug("Timer resolution: %i Hz", (int)(result.HighPrecisionResolution));
nldebug("Time identical: %i, backwards: %i, regular: %i, skipping: %i, frequency bug: %i", identical, backwards, regular, skipping, frequencybug);
if (identical > regular)
nlwarning("The system timer is of relatively low resolution, you may experience issues");
if (backwards > 0 || frequencybug > 0)
{
nlwarning("The current system timer is not reliable across multiple cpu cores");
result.RequiresSingleCore = true;
}
else result.RequiresSingleCore = false;
if (result.HighPrecisionResolution == 14318180)
{
nldebug("Detected known HPET era timer frequency");
}
if (result.HighPrecisionResolution == 3579545)
{
nldebug("Detected known AHCI era timer frequency");
}
if (result.HighPrecisionResolution == 1193182)
{
nldebug("Detected known i8253/i8254 era timer frequency");
}
}
}
/* Return the number of second since midnight (00:00:00), January 1, 1970,
* coordinated universal time, according to the system clock.
* This values is the same on all computer if computers are synchronized (with NTP for example).
*/
uint32 CTime::getSecondsSince1970 ()
{
return uint32(time(NULL));
}
/** Return the number of second since midnight (00:00:00), January 1, 1970,
* coordinated universal time, according to the system clock.
* The time returned is UTC (aka GMT+0), ie it does not have the local time ajustement
* nor it have the daylight saving ajustement.
* This values is the same on all computer if computers are synchronized (with NTP for example).
*/
//uint32 CTime::getSecondsSince1970UTC ()
//{
// // get the local time
// time_t nowLocal = time(NULL);
// // convert it to GMT time (UTC)
// struct tm * timeinfo;
// timeinfo = gmtime(&nowLocal);
// return nl_mktime(timeinfo);
//}
/* Return the local time in milliseconds.
* Use it only to measure time difference, the absolute value does not mean anything.
* On Unix, getLocalTime() will try to use the Monotonic Clock if available, otherwise
* the value can jump backwards if the system time is changed by a user or a NTP time sync process.
* The value is different on 2 different computers; use the CUniTime class to get a universal
* time that is the same on all computers.
* \warning On Win32, the value is on 32 bits only. It wraps around to 0 every about 49.71 days.
*/
TTime CTime::getLocalTime ()
{
#ifdef NL_OS_WINDOWS
//static bool initdone = false;
//static bool byperfcounter;
// Initialization
//if ( ! initdone )
//{
//byperfcounter = (getPerformanceTime() != 0);
//initdone = true;
//}
/* Retrieve time is ms
* Why do we prefer getPerformanceTime() to timeGetTime() ? Because on one dual-processor Win2k
* PC, we have noticed that timeGetTime() slows down when the client is running !!!
*/
/* Now we have noticed that on all WinNT4 PC the getPerformanceTime can give us value that
* are less than previous
*/
//if ( byperfcounter )
//{
// return (TTime)(ticksToSecond(getPerformanceTime()) * 1000.0f);
//}
//else
//{
// This is not affected by system time changes. But it cycles every 49 days.
// return timeGetTime(); // Only this was left active before it was commented.
//}
/*
* The above is no longer relevant.
*/
if (a_HaveQueryPerformance)
{
// On a (fast) 15MHz timer this rolls over after 7000 days.
// If my calculations are right.
LARGE_INTEGER counter;
QueryPerformanceCounter(&counter);
counter.QuadPart *= (LONGLONG)1000L;
counter.QuadPart /= a_QueryPerformanceFrequency.QuadPart;
return counter.QuadPart;
}
else
{
// Use default reliable low resolution timer.
return timeGetTime();
}
#elif defined (NL_OS_UNIX)
#ifdef NL_MONOTONIC_CLOCK
if (hasMonotonicClock())
{
timespec tv;
// This is not affected by system time changes.
if ( clock_gettime( CLOCK_MONOTONIC, &tv ) != 0 )
nlerror ("Can't get clock time again");
return (TTime)tv.tv_sec * (TTime)1000 + (TTime)((tv.tv_nsec/*+500*/) / 1000000);
}
#endif
// This is affected by system time changes.
struct timeval tv;
if ( gettimeofday( &tv, NULL) != 0 )
nlerror ("Can't get time of day");
return (TTime)tv.tv_sec * (TTime)1000 + (TTime)tv.tv_usec / (TTime)1000;
#endif
}
/* Return the time in processor ticks. Use it for profile purpose.
* If the performance time is not supported on this hardware, it returns 0.
* \warning On a multiprocessor system, the value returned by each processor may
* be different. The only way to workaround this is to set a processor affinity
* to the measured thread.
* \warning The speed of tick increase can vary (especially on laptops or CPUs with
* power management), so profiling several times and computing the average could be
* a wise choice.
*/
TTicks CTime::getPerformanceTime ()
{
#ifdef NL_OS_WINDOWS
LARGE_INTEGER ret;
if (QueryPerformanceCounter (&ret))
return ret.QuadPart;
else
return 0;
#elif defined(NL_OS_MAC)
return mach_absolute_time();
#else
#if defined(HAVE_X86_64)
uint64 hi, lo;
__asm__ volatile (".byte 0x0f, 0x31" : "=a" (lo), "=d" (hi));
return (hi << 32) | (lo & 0xffffffff);
#elif defined(HAVE_X86) and !defined(NL_OS_MAC)
uint64 x;
// RDTSC - Read time-stamp counter into EDX:EAX.
__asm__ volatile (".byte 0x0f, 0x31" : "=A" (x));
return x;
#else // HAVE_X86
static bool firstWarn = true;
if (firstWarn)
{
nlwarning ("TTicks CTime::getPerformanceTime () is not implemented for your processor, returning 0");
firstWarn = false;
}
return 0;
#endif // HAVE_X86
#endif // NL_OS_WINDOWS
}
/*
#define GETTICKS(t) asm volatile ("push %%esi\n\t" "mov %0, %%esi" : : "r" (t)); \
asm volatile ("push %eax\n\t" "push %edx"); \
asm volatile ("rdtsc"); \
asm volatile ("movl %eax, (%esi)\n\t" "movl %edx, 4(%esi)"); \
asm volatile ("pop %edx\n\t" "pop %eax\n\t" "pop %esi");
*/
/* Convert a ticks count into second. If the performance time is not supported on this
* hardware, it returns 0.0.
*/
double CTime::ticksToSecond (TTicks ticks)
{
#ifdef NL_OS_WINDOWS
LARGE_INTEGER ret;
if (QueryPerformanceFrequency(&ret))
{
return (double)(sint64)ticks/(double)ret.QuadPart;
}
else
#elif defined(NL_OS_MAC)
{
static double factor = 0.0;
if (factor == 0.0)
{
mach_timebase_info_data_t tbInfo;
mach_timebase_info(&tbInfo);
factor = 1000000000.0 * (double)tbInfo.numer / (double)tbInfo.denom;
}
return double(ticks / factor);
}
#endif // NL_OS_WINDOWS
{
static bool benchFrequency = true;
static sint64 freq = 0;
if (benchFrequency)
{
// try to have an estimation of the cpu frequency
TTicks tickBefore = getPerformanceTime ();
TTicks tickAfter = tickBefore;
TTime timeBefore = getLocalTime ();
TTime timeAfter = timeBefore;
for(;;)
{
if (timeAfter - timeBefore > 1000)
break;
timeAfter = getLocalTime ();
tickAfter = getPerformanceTime ();
}
TTime timeDelta = timeAfter - timeBefore;
TTicks tickDelta = tickAfter - tickBefore;
freq = 1000 * tickDelta / timeDelta;
benchFrequency = false;
}
return (double)(sint64)ticks/(double)freq;
}
}
std::string CTime::getHumanRelativeTime(sint32 nbSeconds)
{
sint32 delta = nbSeconds;
if (delta < 0)
delta = -delta;
// some constants of time duration in seconds
const sint32 oneMinute = 60;
const sint32 oneHour = oneMinute * 60;
const sint32 oneDay = oneHour * 24;
const sint32 oneWeek = oneDay * 7;
const sint32 oneMonth = oneDay * 30; // aprox, a more precise value is 30.416666... but no matter
const sint32 oneYear = oneDay * 365; // aprox, a more precise value is 365.26.. who care?
sint32 year, month, week, day, hour, minute;
year = month = week = day = hour = minute = 0;
/// compute the different parts
year = delta / oneYear;
delta %= oneYear;
month = delta / oneMonth;
delta %= oneMonth;
week = delta / oneWeek;
delta %= oneWeek;
day = delta / oneDay;
delta %= oneDay;
hour = delta / oneHour;
delta %= oneHour;
minute = delta / oneMinute;
delta %= oneMinute;
// compute the string
CSString ret;
if (year)
ret << year << " years ";
if (month)
ret << month << " months ";
if (week)
ret << week << " weeks ";
if (day)
ret << day << " days ";
if (hour)
ret << hour << " hours ";
if (minute)
ret << minute << " minutes ";
if (delta || ret.empty())
ret << delta << " seconds ";
return ret;
}
#ifdef NL_OS_WINDOWS
/** Return the offset in 10th of micro sec between the windows base time (
* 01-01-1601 0:0:0 UTC) and the unix base time (01-01-1970 0:0:0 UTC).
* This value is used to convert windows system and file time back and
* forth to unix time (aka epoch)
*/
uint64 CTime::getWindowsToUnixBaseTimeOffset()
{
static bool init = false;
static uint64 offset = 0;
if (! init)
{
// compute the offset to convert windows base time into unix time (aka epoch)
// build a WIN32 system time for jan 1, 1970
SYSTEMTIME baseTime;
baseTime.wYear = 1970;
baseTime.wMonth = 1;
baseTime.wDayOfWeek = 0;
baseTime.wDay = 1;
baseTime.wHour = 0;
baseTime.wMinute = 0;
baseTime.wSecond = 0;
baseTime.wMilliseconds = 0;
FILETIME baseFileTime = {0,0};
// convert it into a FILETIME value
SystemTimeToFileTime(&baseTime, &baseFileTime);
offset = baseFileTime.dwLowDateTime | (uint64(baseFileTime.dwHighDateTime)<<32);
init = true;
}
return offset;
}
#endif
} // NLMISC