khanat-opennel-code/code/ryzom/server/src/ai_service/knapsack_solver.cpp

502 lines
12 KiB
C++
Raw Normal View History

// Ryzom - MMORPG Framework <http://dev.ryzom.com/projects/ryzom/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "stdpch.h"
#include "knapsack_solver.h"
//////////////////////////////////////////////////////////////////////////////
// CKnapsackSolver //
//////////////////////////////////////////////////////////////////////////////
std::string CKnapsackSolver::toString(Algorithm a)
{
switch (a)
{
case Optimal: return "Optimal";
case FullAddCheck: return "FullAddCheck";
case AddCheck: return "AddCheck";
case FastAddCheck: return "FastAddCheck";
case FullSingleReplace: return "FullSingleReplace";
case SingleReplace: return "SingleReplace";
case FastSingleReplace: return "FastSingleReplace";
case VeryFastSingleReplace: return "VeryFastSingleReplace";
case TakeAll: return "TakeAll";
default: return "undefined";
}
}
CKnapsackSolver::Algorithm CKnapsackSolver::fromString(std::string const& a)
{
if (a=="Optimal") return Optimal;
if (a=="FullAddCheck") return FullAddCheck;
if (a=="AddCheck") return AddCheck;
if (a=="FastAddCheck") return FastAddCheck;
if (a=="FullSingleReplace") return FullSingleReplace;
if (a=="SingleReplace") return SingleReplace;
if (a=="FastSingleReplace") return FastSingleReplace;
if (a=="VeryFastSingleReplace") return VeryFastSingleReplace;
if (a=="TakeAll") return TakeAll;
return UndefinedAlgorithm;
}
/// Find the set that fit the specified maximum weight which have the maximal
/// value total, using an already defined good solution.
void CKnapsackSolver::optimize(float wMax, Algorithm algorithm)
{
H_AUTO(CKnapsackSolver_optimize);
_WMax = wMax;
// Solve the problem
switch (algorithm)
{
case FullAddCheck: optimizeFullAddCheck(); break;
case AddCheck: optimizeAddCheck(); break;
case FastAddCheck: optimizeFastAddCheck(); break;
case FullSingleReplace: optimizeFullSingleReplace(); break;
case SingleReplace: optimizeSingleReplace(); break;
default:
case FastSingleReplace: optimizeFastSingleReplace(); break;
case VeryFastSingleReplace: optimizeVeryFastSingleReplace(); break;
case Optimal: optimizeOptimal(); break;
case TakeAll: optimizeTakeAll(); break;
}
}
/// Algorithm is taken from http://eleves.ensmp.fr/P00/00rouaul/sacados/sacados_swp.html
/// This algorithm complexity is O(N^2)
void CKnapsackSolver::optimizeOptimal()
{
H_AUTO(CKnapsackSolver_optimizeOptimal);
// :FIXME: Not thread safe
// Allocate temporary solution
bool* take = new bool[size()];
for (size_t i=0; i<size(); ++i)
take[i] = false;
// Run the optimization recursion
optimizeOptimalRec((int)size()-1, _WMax, 0, take);
// Delete temporary solution
delete [] take;
}
/// @param i take[j] for j>i are already determined by the recursion
/// @param w Free weight to fill
/// @param v Sum of the taken values (ie all value(j) where take[j] is true and j > i)
/// @param take Current examined partial solution
void CKnapsackSolver::optimizeOptimalRec(int i, float w, float v, bool* take)
{
nlassert(i>=-1);
if (i==-1)
{
if (v > _VBest)
{
_WBest = _WMax - w;
_VBest = v;
std::copy(take, take+size(), _Take);
}
}
else
{
take[i] = false;
optimizeOptimalRec(i-1, w, v, take);
if (weight(i) <= w)
{
take[i] = true;
optimizeOptimalRec(i - 1, w - weight(i), v + value(i), take);
}
}
}
/// Here we consider already defined solution has lots of take[i] that are
/// true. We just find the first i for which take[i] is false and that don't
/// exceed maximal weight. If we find one we take it which gives a better
/// solution.
/// Note: We start at the end since CTargetable puts candidate at end.
/// This algorithm complexity is O(N)
void CKnapsackSolver::optimizeAddCheck()
{
H_AUTO(CKnapsackSolver_optimizeAddCheck);
int i = (int)size()-1;
float w = _WMax - _WBest;
while (i>=0)
{
if (!_Take[i] && weight(i) <= w)
{
_Take[i] = true;
_WBest += weight(i);
_VBest += value(i);
break;
}
--i;
}
}
/// Same as AddCheck, except that we consider all false take[i], even if we already took some.
/// This algorithm complexity is Theta(N)
void CKnapsackSolver::optimizeFullAddCheck()
{
H_AUTO(CKnapsackSolver_optimizeFullAddCheck);
int i = (int)size()-1;
float w = _WMax - _WBest;
while (i>=0)
{
if (!_Take[i] && weight(i) <= w)
{
_Take[i] = true;
_WBest += weight(i);
_VBest += value(i);
}
--i;
}
}
/// Same as AddCheck, except that we examine only a single false take[i], event if it cannot be taken.
/// This algorithm complexity is O(N), but O(1) when used by CTargetable
void CKnapsackSolver::optimizeFastAddCheck()
{
H_AUTO(CKnapsackSolver_optimizeFastAddCheck);
int i = (int)size()-1;
float w = _WMax - _WBest;
while (i>=0)
{
if (!_Take[i])
{
if (weight(i) <= w)
{
_Take[i] = true;
_WBest += weight(i);
_VBest += value(i);
}
break;
}
--i;
}
}
/// First try FullAddCheck, then try to replace the already taken elements with not taken ones.
/// This algorithm complexity is Theta(N^2)
void CKnapsackSolver::optimizeFullSingleReplace()
{
optimizeFullAddCheck();
H_AUTO(CKnapsackSolver_optimizeFullSingleReplace);
int i = (int)size()-1;
while (i>=0)
{
// For each not taken ith element
if (!_Take[i])
{
float w = weight(i);
float v = value(i);
int worst = i;
// Find the worst element that ith element can replace
int j = (int)size()-1;
while (j>=0)
{
if (i!=j && _Take[j] && w<=weight(j) && v>value(j))
{
worst = j;
w = weight(j);
v = value(j);
}
--j;
}
// If we find one untake it and take ith.
if (worst!=i)
{
_Take[worst] = false;
_WBest -= weight(worst);
_VBest -= value(worst);
_Take[i] = true;
_WBest += weight(i);
_VBest += value(i);
}
}
--i;
}
}
/// First try FastAddCheck, and if it fails optimizing try to replace a not
/// taken one with an already taken element (the worst one) until a
/// replacement occurs.
/// This algorithm complexity is Theta(N^2) and O(N^2) for CTargetable
void CKnapsackSolver::optimizeSingleReplace()
{
float vBest = _VBest;
optimizeAddCheck();
if (_VBest > vBest)
return;
H_AUTO(CKnapsackSolver_optimizeSingleReplace);
int i = (int)size()-1;
while (i>=0)
{
// For each not taken ith element
if (!_Take[i])
{
float w = weight(i);
float v = value(i);
int worst = i;
// Find the worst element that ith element can replace
int j = (int)size()-1;
while (j>=0)
{
if (i!=j && _Take[j] && w<=weight(j) && v>value(j))
{
worst = j;
w = weight(j);
v = value(j);
}
--j;
}
// If we find one untake it and take ith.
if (worst!=i)
{
_Take[worst] = false;
_WBest -= weight(worst);
_VBest -= value(worst);
_Take[i] = true;
_WBest += weight(i);
_VBest += value(i);
break;
}
}
--i;
}
}
/// First try FastAddCheck, and if it fails optimizing try to replace the
/// first not taken element with an already taken element (the worst one).
/// This algorithm complexity is O(N^2) and Theta(N) for CTargetable
void CKnapsackSolver::optimizeFastSingleReplace()
{
float vBest = _VBest;
optimizeFastAddCheck();
if (_VBest > vBest)
return;
H_AUTO(CKnapsackSolver_optimizeFastSingleReplace);
int i = (int)size()-1;
while (i>=0)
{
// For each not taken ith element
if (!_Take[i])
{
float w = weight(i);
float v = value(i);
int worst = i;
// Find the worst element that ith element can replace
int j = (int)size()-1;
while (j>=0)
{
if (i!=j && _Take[j] && w<=weight(j) && v>value(j))
{
worst = j;
w = weight(j);
v = value(j);
}
--j;
}
// If we find one untake it and take ith.
if (worst!=i)
{
_Take[worst] = false;
_WBest -= weight(worst);
_VBest -= value(worst);
_Take[i] = true;
_WBest += weight(i);
_VBest += value(i);
}
break;
}
--i;
}
}
/// First try FastAddCheck, and if it fails optimizing try to replace the
/// first not taken element with an already taken one (the first worst that
/// the not taken one).
/// This algorithm complexity is O(N^2) and O(N) for CTargetable
void CKnapsackSolver::optimizeVeryFastSingleReplace()
{
float vBest = _VBest;
optimizeFastAddCheck();
if (_VBest > vBest)
return;
H_AUTO(CKnapsackSolver_optimizeVeryFastSingleReplace);
int i = (int)size()-1;
while (i>=0)
{
// For each not taken ith element
if (!_Take[i])
{
float w = weight(i);
float v = value(i);
int worst = i;
// Find the worst element that ith element can replace
int j = (int)size()-1;
while (j>=0)
{
if (i!=j && _Take[j] && w<=weight(j) && v>value(j))
{
worst = j;
w = weight(j);
v = value(j);
break;
}
--j;
}
// If we find one untake it and take ith.
if (worst!=i)
{
_Take[worst] = false;
_WBest -= weight(worst);
_VBest -= value(worst);
_Take[i] = true;
_WBest += weight(i);
_VBest += value(i);
}
break;
}
--i;
}
}
void CKnapsackSolver::optimizeTakeAll()
{
H_AUTO(CKnapsackSolver_optimizeTakeAll);
_WBest = 0;
_VBest = 0;
int i = (int)size()-1;
while (i>=0)
{
_Take[i] = true;
_WBest += weight(i);
_VBest += value(i);
--i;
}
}
CKnapsackSolver::CKnapsackSolver(IKnapsackContext* context, bool* _take)
: _Context(context)
, _Take(_take)
, _AllocatedTake(_take==NULL)
, _WBest(0.f)
, _VBest(0.f)
, _WMax(0.f)
{
if (_take==NULL && size()!=0)
{
_Take = new bool[size()];
for (size_t i=0; i<size(); ++i)
_Take[i] = false;
}
else
{
for (size_t i=0; i<size(); ++i)
{
if (take(i))
{
_WBest += weight(i);
_VBest += value(i);
}
}
_WMax = _WBest;
}
}
CKnapsackSolver::~CKnapsackSolver()
{
if (_AllocatedTake)
delete [] _Take;
}
float CKnapsackSolver::weight(size_t i)
{
if (_Context!=0)
return _Context->weight(i);
else
return 0.f;
}
float CKnapsackSolver::value(size_t i)
{
if (_Context!=0)
return _Context->value(i);
else
return 0.f;
}
size_t CKnapsackSolver::size()
{
if (_Context!=0)
return _Context->size();
else
return 0;
}
bool CKnapsackSolver::take(size_t i)
{
if (_Take!=0 && i>=0 && i<size())
return _Take[i];
else
return false;
}
float CKnapsackSolver::totalWeight()
{
return _WBest;
}
float CKnapsackSolver::totalValue()
{
return _VBest;
}
float CKnapsackSolver::totalFreeWeight()
{
return _WMax - _WBest;
}
//////////////////////////////////////////////////////////////////////////////
// CKnapsackContext //
//////////////////////////////////////////////////////////////////////////////
CKnapsackContext::CKnapsackContext(size_t size, float* weights, float* values)
: _Size(size)
, _Weights(weights)
, _Values(values)
{
}
float CKnapsackContext::weight(size_t i)
{
if (i>=0 && i<_Size)
return _Weights[i];
else
return 0.f;
}
float CKnapsackContext::value(size_t i)
{
if (i>=0 && i<_Size)
return _Values[i];
else
return 0.f;
}
size_t CKnapsackContext::size()
{
return _Size;
}