khanat-opennel-code/code/ryzom/tools/client/r2_islands_textures/screenshot_islands.cpp

2362 lines
68 KiB
C++
Raw Normal View History

2017-03-15 15:43:49 +00:00
// Ryzom - MMORPG Framework <http://dev.ryzom.com/projects/ryzom/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "screenshot_islands.h"
#include <game_share/scenario_entry_points.h>
#include <game_share/season.h>
#include <game_share/dir_light_setup.h>
#include <game_share/bmp4image.h>
#include <nel/misc/path.h>
#include <nel/misc/file.h>
#include <nel/misc/config_file.h>
#include <nel/misc/big_file.h>
#include <nel/misc/i18n.h>
#include <nel/misc/progress_callback.h>
#include <nel/misc/random.h>
#include <nel/misc/common.h>
#include <nel/3d/u_material.h>
#include <nel/3d/u_driver.h>
#include <nel/3d/u_scene.h>
#include <nel/3d/u_landscape.h>
#include <nel/3d/u_camera.h>
#include <nel/3d/landscapeig_manager.h>
#include <nel/3d/u_material.h>
#include <nel/georges/u_form_loader.h>
#include <nel/georges/u_form.h>
#include <nel/georges/u_form_elm.h>
// AI share
#include <ai_share/world_map.h>
#include <nel/3d/material.h>
#include <math.h>
#include <limits>
using namespace NLMISC;
using namespace NL3D;
using namespace std;
using namespace EGSPD;
using namespace NLGEORGES;
using namespace RYAI_MAP_CRUNCH;
// The 3d driver
UDriver *driver = NULL;
CLandscapeIGManager LandscapeIGManager;
uint ScreenShotWidth;
uint ScreenShotHeight;
UMaterial sceneMaterial;
namespace R2
{
const TBufferEntry InteriorValue = std::numeric_limits<TBufferEntry>::max()-1;
const TBufferEntry ValueBorder = std::numeric_limits<TBufferEntry>::max()-2;
const uint32 BigValue= 15*5;
const float limitValue = 200.0;
//-------------------------------------------------------------------------------------------------
CScreenshotIslands::CScreenshotIslands()
{
_BackColor = CRGBA(255, 255, 255, 255);
}
//-------------------------------------------------------------------------------------------------
void CScreenshotIslands::init()
{
// Create a driver
driver = UDriver::createDriver(0, true);
nlassert(driver);
sceneMaterial = driver->createMaterial();
sceneMaterial.getObjectPtr()->setLighting(true);
sceneMaterial.getObjectPtr()->setSpecular(CRGBA(255, 255, 255, 255));
sceneMaterial.getObjectPtr()->setShininess(50);
sceneMaterial.getObjectPtr()->setDiffuse(CRGBA(100, 100, 100, 255));
sceneMaterial.getObjectPtr()->setEmissive(CRGBA(25, 25, 25, 255));
// load and parse the configfile
CConfigFile cf;
cf.load("island_screenshots.cfg");
// get the value of searchPaths
CConfigFile::CVar * searchPaths = cf.getVarPtr("SearchPaths");
if(searchPaths)
{
for(int i = 0; i < searchPaths->size(); i++)
{
CPath::addSearchPath(searchPaths->asString(i).c_str(), true, false);
}
}
CPath::remapExtension("dds", "tga", true);
CPath::remapExtension("dds", "png", true);
// get the scenario entry points file
CConfigFile::CVar * epFile = cf.getVarPtr("CompleteIslandsFile");
if(epFile)
{
_CompleteIslandsFile = epFile->asString();
}
// get the out directory path
CConfigFile::CVar * outDir = cf.getVarPtr("OutDir");
if(outDir)
{
_OutDirectory = outDir->asString();
}
// get the vegetation option
CConfigFile::CVar * veget = cf.getVarPtr("Vegetation");
if(veget)
{
_Vegetation = veget->asBool();
}
// get the vegetation option
CConfigFile::CVar * inverseZTest = cf.getVarPtr("InverseZTest");
if(inverseZTest)
{
_InverseZTest = inverseZTest->asBool();
}
// get list of continents
CConfigFile::CVar * continents = cf.getVarPtr("Continents");
vector<string> continentsName(continents->size());
for(int i = 0; i < continents->size(); i++)
{
continentsName[i] = continents->asString(i);
}
// get continents data (light, coarseMesh,...)
UFormLoader * formLoader;
for(uint i=0; i<continentsName.size(); i++)
{
string georgeFileName = continentsName[i]+".continent";
formLoader = UFormLoader::createLoader();
CSmartPtr<UForm> form = formLoader->loadForm(CPath::lookup(georgeFileName).c_str());
if(form)
{
CContinentData continentData;
UFormElm &formRoot = form->getRootNode();
const UFormElm *elm;
if(formRoot.getNodeByName(&elm, "LightLandscapeDay") && elm)
{
CDirLightSetup landscapeLightDay;
landscapeLightDay.build(*elm);
continentData.Ambiant = landscapeLightDay.Ambiant;
continentData.Diffuse = landscapeLightDay.Diffuse;
if(continentsName[i]=="r2_jungle" || continentsName[i]=="r2_forest" || continentsName[i]=="r2_roots")
{
continentData.Ambiant = CRGBA(255, 255, 255, 255);
continentData.Diffuse = CRGBA(255, 255, 255, 255);
}
}
formRoot.getValueByName(continentData.IGFile, "LandscapeIG");
string zoneMin, zoneMax;
formRoot.getValueByName(zoneMin, "ZoneMin");
formRoot.getValueByName(zoneMax, "ZoneMax");
getPosFromZoneName(zoneMin, continentData.ZoneMin);
getPosFromZoneName(zoneMax, continentData.ZoneMax);
string filename;
if(formRoot.getValueByName(filename, "Ecosystem"))
{
UFormLoader *formLoaderEco = UFormLoader::createLoader();
if(formLoaderEco)
{
// Load the form
CSmartPtr<UForm> formEco = formLoaderEco->loadForm(filename.c_str());
if(formEco)
{
// Root node
UFormElm &formRootEco = formEco->getRootNode();
// Small bank.
formRootEco.getValueByName(continentData.SmallBank, "SmallBank");
// Far bank.
formRootEco.getValueByName(continentData.FarBank, "FarBank");
// Coarse mesh texture.
formRootEco.getValueByName(continentData.CoarseMeshMap, "CoarseMeshMap");
}
else
{
nlwarning("CScreenshotIslands::init : Can't load form %s.", filename.c_str());
}
UFormLoader::releaseLoader(formLoaderEco);
}
}
_ContinentsData[continentsName[i]] = continentData;
}
UFormLoader::releaseLoader(formLoader);
}
// load islands
loadIslands();
searchIslandsBorders();
// get seasons
CConfigFile::CVar * seasonSuffixes = cf.getVarPtr("SeasonSuffixes");
if(seasonSuffixes)
{
for(uint i = 0; i < (uint)seasonSuffixes->size(); i++)
{
_SeasonSuffixes.push_back(seasonSuffixes->asString(i));
}
}
// get the meter size in pixels
CConfigFile::CVar * meterSize = cf.getVarPtr("MeterPixelSize");
if(meterSize)
{
_MeterPixelSize = meterSize->asInt();
}
}
//-------------------------------------------------------------------------------------------------
bool CScreenshotIslands::getPosFromZoneName(const std::string &name, NLMISC::CVector2f &dest)
{
if(name.empty())
{
nlwarning ("getPosFromZoneName(): empty name, can't getPosFromZoneName");
return false;
}
static std::string zoneName;
static string xStr, yStr;
xStr.clear();
yStr.clear();
zoneName = CFile::getFilenameWithoutExtension(name);
uint32 i = 0;
while(zoneName[i] != '_')
{
if(!::isdigit(zoneName[i])) return false;
yStr += zoneName[i]; ++i;
if(i == zoneName.size())
return false;
}
++i;
while(i < zoneName.size())
{
if(!::isalpha(zoneName[i])) return false;
xStr += (char) ::toupper(zoneName[i]); ++i;
}
if(xStr.size() != 2) return false;
dest.x = 160.f * ((xStr[0] - 'A') * 26 + (xStr[1] - 'A'));
dest.y = 160.f * -atoi(yStr.c_str());
return true;
}
//-------------------------------------------------------------------------------------------------
void CScreenshotIslands::searchIslandsBorders()
{
vector<string> filenames;
list<string> zonelFiles;
map< CVector2f, bool> islandsMap;
TContinentsData::iterator itCont(_ContinentsData.begin()), lastCont(_ContinentsData.end());
for( ; itCont != lastCont ; ++itCont)
{
// for each continent we recover a map of zonel files whith position of
// left/bottom point of each zone for keys
filenames.clear();
zonelFiles.clear();
string bnpFileName = itCont->first + ".bnp";
CBigFile::getInstance().list(bnpFileName.c_str(), filenames);
for(uint i=0; i<filenames.size(); i++)
{
if(CFile::getExtension(filenames[i]) == "zonel")
{
zonelFiles.push_back(filenames[i]);
}
}
list<string>::iterator itZonel(zonelFiles.begin()), lastZonel(zonelFiles.end());
for( ; itZonel != lastZonel ; ++itZonel)
{
CVector2f position;
getPosFromZoneName(*itZonel, position);
islandsMap[position] = true;
}
// search for island borders
CContinentData & continent = itCont->second;
list< string >::const_iterator itIsland(continent.Islands.begin()), lastIsland(continent.Islands.end());
for( ; itIsland != lastIsland ; ++itIsland)
{
if(_IslandsData.find(itIsland->c_str()) != _IslandsData.end())
{
const CProximityZone & islandData = _IslandsData[itIsland->c_str()];
sint32 xmin = islandData.getBoundXMin();
sint32 xmax = islandData.getBoundXMax();
sint32 ymin = islandData.getBoundYMin();
sint32 ymax = islandData.getBoundYMax();
sint32 width = xmax-xmin;
sint32 height = ymax-ymin;
sint32 zonelXMin = ((uint)(xmin/160)) * 160;
sint32 zonelYMin = ((uint)(ymin/160) - 1) * 160;
sint32 zonelXMax = ((uint)(xmax/160)) * 160;
sint32 zonelYMax = ((uint)(ymax/160) - 1) * 160;
list< CVector2f > leftBorders, rightBorders, bottomBorders, topBorders;
// search for left and right borders on lines
for(sint32 y = zonelYMin; y<=zonelYMax; y+=160 )
{
sint32 x=zonelXMin;
CVector2f vec((float)x, (float)y);
bool lastZoneFull = (islandsMap.find(vec) != islandsMap.end());
bool currentZoneFull;
while(x<=zonelXMax)
{
vec = CVector2f((float)x, (float)y);
currentZoneFull = (islandsMap.find(vec) != islandsMap.end());
if(lastZoneFull && !currentZoneFull && vec.x-1 >= xmin)
{
rightBorders.push_back(CVector2f(vec.x-1, vec.y));
}
else if(!lastZoneFull && currentZoneFull)
{
leftBorders.push_back(vec);
}
x += 160;
lastZoneFull = currentZoneFull;
}
}
// search for bottom and top borders on columns
for(sint32 x = zonelXMin; x<=zonelXMax; x+=160 )
{
sint32 y=zonelYMin;
CVector2f vec((float)x, (float)y);
bool lastZoneFull = (islandsMap.find(vec) != islandsMap.end());
bool currentZoneFull;
while(y<=zonelYMax)
{
vec = CVector2f((float)x, (float)y);
currentZoneFull = (islandsMap.find(vec) != islandsMap.end());
if(lastZoneFull && !currentZoneFull && vec.y-1 >= ymin)
{
topBorders.push_back(CVector2f(vec.x, vec.y-1));
}
else if(!lastZoneFull && currentZoneFull)
{
bottomBorders.push_back(vec);
}
y += 160;
lastZoneFull = currentZoneFull;
}
}
_BorderIslands[*itIsland + "/right"] = rightBorders;
_BorderIslands[*itIsland + "/left"] = leftBorders;
_BorderIslands[*itIsland + "/bottom"] = bottomBorders;
_BorderIslands[*itIsland + "/top"] = topBorders;
}
}
}
}
//-------------------------------------------------------------------------------------------------
void CScreenshotIslands::attenuateIslandBorders(const std::string & islandName, CBitmap & islandBitmap,
const CProximityZone & islandData)
{
list< CVector2f > leftBorders, rightBorders, bottomBorders, topBorders;
rightBorders = _BorderIslands[islandName + "/right"];
leftBorders = _BorderIslands[islandName + "/left"];
bottomBorders = _BorderIslands[islandName + "/bottom"];
topBorders = _BorderIslands[islandName + "/top"];
sint32 xmin = islandData.getBoundXMin();
sint32 xmax = islandData.getBoundXMax();
sint32 ymin = islandData.getBoundYMin();
sint32 ymax = islandData.getBoundYMax();
sint32 width = xmax-xmin;
sint32 height = ymax-ymin;
uint8 *dest = &(islandBitmap.getPixels(0)[0]);
list< CVector2f >::iterator itBorder;
for(itBorder=leftBorders.begin(); itBorder!=leftBorders.end(); itBorder++)
{
const CVector2f initPoint = *itBorder;
sint32 x = (sint32)initPoint.x - xmin;
sint32 y = (sint32)initPoint.y - ymin;
sint32 maxBorder = 160;
if(y<0)
{
maxBorder += y;
y = 0;
}
sint32 inity = y;
while(y<(inity+maxBorder) && y<(sint32)height)
{
double noiseValue = (1+cos(((y-inity)*2*Pi)/maxBorder))*5;
double evalNoise = 10 + noiseValue;
double diffAlpha = 255/evalNoise;
CRGBA color = islandBitmap.getPixelColor(x, height-y-1);
sint32 currentX = x-1;
while((currentX>=x-evalNoise) && currentX>=0)
{
uint8 *pixel = &(islandBitmap.getPixels(0)[((height-y-1)*width + currentX)*4]);
uint alpha = (uint)(255-diffAlpha*(x-currentX));
uint invAlpha = 255-alpha;
*pixel = (uint8) (((invAlpha * *pixel) + (alpha * color.R)) >> 8);
*(pixel + 1) = (uint8) (((invAlpha * *(pixel + 1)) + (alpha * color.G)) >> 8);
*(pixel + 2) = (uint8) (((invAlpha * *(pixel + 2)) + (alpha * color.B)) >> 8);
*(pixel + 3) = (uint8) 255;
currentX--;
}
y++;
}
}
for(itBorder=rightBorders.begin(); itBorder!=rightBorders.end(); itBorder++)
{
const CVector2f initPoint = *itBorder;
sint32 x = (sint32)initPoint.x - xmin;
sint32 y = (sint32)initPoint.y - ymin;
sint32 maxBorder = 160;
if(y<0)
{
maxBorder += y;
y = 0;
}
sint32 inity = y;
while(y<(inity+maxBorder) && y<(sint32)height)
{
double noiseValue = (1+cos(((y-inity)*2*Pi)/maxBorder))*5;
double evalNoise = 10 + noiseValue;
double diffAlpha = 255/evalNoise;
CRGBA color = islandBitmap.getPixelColor(x, height-y-1);
sint32 currentX = x+1;
while((currentX<=x+evalNoise) && currentX<width)
{
uint8 *pixel = &(islandBitmap.getPixels(0)[((height-y-1)*width + currentX)*4]);
uint alpha = (uint)(255-diffAlpha*(currentX-x));
uint invAlpha = 255-alpha;
*pixel = (uint8) (((invAlpha * *pixel) + (alpha * color.R)) >> 8);
*(pixel + 1) = (uint8) (((invAlpha * *(pixel + 1)) + (alpha * color.G)) >> 8);
*(pixel + 2) = (uint8) (((invAlpha * *(pixel + 2)) + (alpha * color.B)) >> 8);
*(pixel + 3) = (uint8) 255;
currentX++;
}
y++;
}
}
for(itBorder=bottomBorders.begin(); itBorder!=bottomBorders.end(); itBorder++)
{
const CVector2f initPoint = *itBorder;
sint32 x = (sint32)initPoint.x - xmin;
sint32 y = (sint32)initPoint.y - ymin;
sint32 maxBorder = 160;
if(x<0)
{
maxBorder += x;
x = 0;
}
sint32 initx = x;
while(x<(initx+maxBorder) && x<(sint32)width)
{
double noiseValue = (1+cos(((x-initx)*2*Pi)/maxBorder))*5;
double evalNoise = 10 + noiseValue;
double diffAlpha = 255/evalNoise;
CRGBA color = islandBitmap.getPixelColor(x, height-y-1);
sint32 currentY = y-1;
while((currentY>=y-evalNoise) && currentY>=0)
{
uint8 *pixel = &(islandBitmap.getPixels(0)[((height-currentY-1)*width + x)*4]);
uint alpha = (uint)(255-diffAlpha*(y-currentY));
uint invAlpha = 255-alpha;
*pixel = (uint8) (((invAlpha * *pixel) + (alpha * color.R)) >> 8);
*(pixel + 1) = (uint8) (((invAlpha * *(pixel + 1)) + (alpha * color.G)) >> 8);
*(pixel + 2) = (uint8) (((invAlpha * *(pixel + 2)) + (alpha * color.B)) >> 8);
*(pixel + 3) = (uint8) 255;
currentY--;
}
x++;
}
}
for(itBorder=topBorders.begin(); itBorder!=topBorders.end(); itBorder++)
{
const CVector2f initPoint = *itBorder;
sint32 x = (sint32)initPoint.x - xmin;
sint32 y = (sint32)initPoint.y - ymin;
sint32 maxBorder = 160;
if(x<0)
{
maxBorder += x;
x = 0;
}
sint32 initx = x;
while(x<(initx+maxBorder) && x<(sint32)width)
{
double noiseValue = (1+cos(((x-initx)*2*Pi)/maxBorder))*5;
double evalNoise = 10 + noiseValue;
double diffAlpha = 255/evalNoise;
CRGBA color = islandBitmap.getPixelColor(x, height-y-1);
sint32 currentY = y+1;
while((currentY<=y+evalNoise) && currentY<height)
{
uint8 *pixel = &(islandBitmap.getPixels(0)[((height-currentY-1)*width + x)*4]);
uint alpha = (uint)(255-diffAlpha*(currentY-y));
uint invAlpha = 255-alpha;
*pixel = (uint8) (((invAlpha * *pixel) + (alpha * color.R)) >> 8);
*(pixel + 1) = (uint8) (((invAlpha * *(pixel + 1)) + (alpha * color.G)) >> 8);
*(pixel + 2) = (uint8) (((invAlpha * *(pixel + 2)) + (alpha * color.B)) >> 8);
*(pixel + 3) = (uint8) 255;
currentY++;
}
x++;
}
}
}
//-------------------------------------------------------------------------------------------------
void CScreenshotIslands::buildScreenshots()
{
init();
buildIslandsTextures();
}
//-------------------------------------------------------------------------------------------------
void CScreenshotIslands::writeProximityBufferToTgaFile(const std::string& fileName,const TBuffer& buffer,uint32 scanWidth,uint32 scanHeight)
{
uint imageWidth = (scanWidth); // (scanWidth+15)&~15;
uint imageHeight = (scanHeight);
CTGAImageGrey tgaImage;
tgaImage.setup((uint16)imageWidth, (uint16)imageHeight, fileName, 0, 0);
for (uint32 y=0;y<scanHeight;++y)
{
for (uint32 x=0; x<scanWidth; ++x)
{
uint32 value= buffer[y*scanWidth+x];
tgaImage.set(x, (value>255*5)?255:value/5);
}
tgaImage.writeLine();
}
}
//-------------------------------------------------------------------------------------------------
void CScreenshotIslands::processProximityBuffer(TBuffer & inputBuffer, uint32 lineLength, TBuffer& resultBuffer)
{
// a couple of constants to control the range over which our degressive filter is to be applied
const uint32 smallValue= 2*5;
float a = 5*((255.0 - limitValue)/(float(100-BigValue)));
float b = (float)(limitValue*5 - a*BigValue);
// determine numer of lines in the buffer...
uint32 numLines= inputBuffer.size()/ lineLength;
// clear out the result buffer and reset all values to 5*255, remembering that this is the correct value for the image edges
resultBuffer.clear();
resultBuffer.resize(inputBuffer.size(),(TBufferEntry)5*255);
for (uint32 y=1;y<numLines-1;++y)
{
uint32 lineOffset= y* lineLength;
for (uint32 x=1;x<lineLength-1;++x)
{
uint32 offset= lineOffset+x;
uint32 value=(uint32)inputBuffer[offset];
// apply a clip and cosine function
/*
if (value<smallValue) value=0;
else if (value>BigValue) value=5*255;
else value= (uint32)(((1.0-cos(Pi*(float(value-smallValue)/(float)(BigValue-smallValue))))/2.0)*float(5*255));
*/
if (value==ValueBorder);
else if ((value>=0) && (value<smallValue)) value=0;
else if (value>BigValue)
{
if(value==InteriorValue)
{
value = (uint)(5*limitValue);
}
else
{
value = (uint)(a*value+b);
if(value > 5*255) value = 5*255;
}
}
else if((value>=smallValue) && (value<=BigValue))
{
value= (uint32)(((1.0-cos(Pi*(float(value-smallValue)/(float)(BigValue-smallValue))))/2.0)*float(5*limitValue));
}
// store the value into the result buffer
resultBuffer[offset]= (TBufferEntry)value;
}
}
// modify inputBuffer to store "bigValue" limit
for (uint32 y=1;y<numLines-1;++y)
{
uint32 lineOffset= y* lineLength;
for (uint32 x=1;x<lineLength-1;++x)
{
uint32 offset= lineOffset+x;
uint32 value=(uint32)inputBuffer[offset];
if(value==BigValue) value = 255*5;
else value = 0;
inputBuffer[offset]= (TBufferEntry)value;
}
}
/*
// lines
for (uint32 y=0;y<numLines;++y)
{
uint32 lineOffset= y* lineLength;
for (uint32 x=0;x<lineLength;++x)
{
uint32 offset = lineOffset+x;
uint16 value = resultBuffer[offset];
if(value==ValueBorder)
{
resultBuffer[offset]= (TBufferEntry)(5*limitValue);
// increase x
if(x+1<lineLength-1)
{
uint16 nextValue = resultBuffer[offset+1];
uint16 prevValue = (TBufferEntry)(5*limitValue);
if(nextValue!=(TBufferEntry)(5*limitValue))
{
uint32 count = x+1;
while((count<x+7) && (count<lineLength-1) && ((nextValue=resultBuffer[lineOffset+count])!=0)
&& nextValue!=(TBufferEntry)(5*limitValue) && (nextValue!=ValueBorder))
{
uint16 newValue = (TBufferEntry)(prevValue+5*7);
if(newValue < nextValue)
{
resultBuffer[lineOffset+count] = newValue;
}
prevValue = newValue;
count++;
}
x = count-1;
break;
}
}
// decrease x
if(x-1>0)
{
uint16 nextValue = resultBuffer[offset-1];
uint16 prevValue = (TBufferEntry)(5*limitValue);
if(nextValue!=(TBufferEntry)(5*limitValue))
{
uint32 count = x-1;
while((count>x-7) && (count>0) && ((nextValue=resultBuffer[lineOffset+count])!=0)
&& nextValue!=(TBufferEntry)(5*limitValue) && (nextValue!=ValueBorder))
{
uint16 newValue = (TBufferEntry)(prevValue+5*7);
if(newValue < nextValue)
{
resultBuffer[lineOffset+count] = newValue;
}
prevValue = newValue;
count--;
}
}
}
}
}
}
//columns
for (uint32 x=0;x<lineLength;++x)
{
// setup start and end offsets marking first and last 'zero' value pixels in the column
uint32 startOffset=x, endOffset=x+(numLines-1)*lineLength;
for (uint32 offset=startOffset; offset<=endOffset; offset+=lineLength)
{
uint16 value = resultBuffer[offset];
if(value==ValueBorder)
{
resultBuffer[offset]= (TBufferEntry)(5*limitValue);
// increase y
if(offset+lineLength<=endOffset)
{
uint16 nextValue = resultBuffer[offset+lineLength];
uint16 prevValue = (TBufferEntry)(5*limitValue);
if(nextValue!=(TBufferEntry)(5*limitValue))
{
uint32 count = offset+lineLength;
while((count<offset+7*lineLength) && (count<=endOffset) &&
((nextValue=resultBuffer[count])!=0) && nextValue!=(TBufferEntry)(5*limitValue) && (nextValue!=ValueBorder))
{
uint16 newValue = (TBufferEntry)(prevValue+5*7);
if(newValue < nextValue)
{
resultBuffer[count] = newValue;
}
prevValue = newValue;
count += lineLength;
}
offset = count-lineLength;
break;
}
}
// decrease y
if(offset-lineLength>=startOffset)
{
uint16 nextValue = resultBuffer[offset-lineLength];
uint16 prevValue = (TBufferEntry)(5*limitValue);
if(nextValue!=(TBufferEntry)(5*limitValue))
{
uint32 count = offset-lineLength;
while((count>offset-7*lineLength) && (count>=startOffset) &&
((nextValue=resultBuffer[count])!=0) && nextValue!=(TBufferEntry)(5*limitValue) && (nextValue!=ValueBorder))
{
uint16 newValue = (TBufferEntry)(prevValue+5*7);
if(newValue < nextValue)
{
resultBuffer[count] = newValue;
}
prevValue = newValue;
count -= lineLength;
}
}
}
}
}
}
*/
//-----------------------------------------------------------------------------
// search for pixels of borders
map< CVector2f, bool > bordersPixels;
for (uint32 y=0;y<numLines;++y)
{
uint32 lineOffset= y* lineLength;
for (uint32 x=0;x<lineLength;++x)
{
uint32 offset = lineOffset+x;
uint16 value = resultBuffer[offset];
if(value==ValueBorder)
{
bordersPixels[CVector2f((float)x, (float)y)] = true;
resultBuffer[offset] = (TBufferEntry)(5*limitValue);
}
}
}
//-----------------------------------------------------------------------------
// search for global borders
// search on lines for top and bottom borders
map< CVector2f, uint32 > leftBorders, rightBorders, bottomBorders, topBorders;
for (uint32 y=0;y<numLines;++y)
{
uint32 lineOffset= y* lineLength;
bool lastValue = false;
CVector2f firstPixelBorder;
firstPixelBorder.set(0.f, 0.f);
uint32 nbPixelsBorder = 0;
for (uint32 x=0;x<lineLength;++x)
{
bool value = (bordersPixels.find(CVector2f((float)x, (float)y))!=bordersPixels.end());
if(value)
{
if(!lastValue)
{
firstPixelBorder = CVector2f((float)x, (float)y);
}
nbPixelsBorder ++;
}
else if(lastValue)
{
// store border line
if(nbPixelsBorder !=1) //column instead of line
{
bool top=false, bottom=false;
if(y>0)
{
for(uint32 xc=(uint32)firstPixelBorder.x; xc<(uint32)(firstPixelBorder.x+nbPixelsBorder); xc++)
{
if(resultBuffer[(y-1)*lineLength+xc]==(TBufferEntry)(5*255))
{
bottom = true;
break;
}
}
}
if(y+1<numLines)
{
for(uint32 xc=(uint32)firstPixelBorder.x; xc<(uint32)(firstPixelBorder.x+nbPixelsBorder); xc++)
{
if(resultBuffer[(y+1)*lineLength+xc]==(TBufferEntry)(5*255))
{
top = true;
break;
}
}
}
// TOP
if(top)
topBorders[firstPixelBorder] =nbPixelsBorder;
// BOTTOM
if(bottom)
bottomBorders[firstPixelBorder] =nbPixelsBorder;
}
nbPixelsBorder =0;
}
lastValue = value;
}
}
// search on columns for left and right borders
for (uint32 x=0;x<lineLength;++x)
{
bool lastValue = false;
CVector2f firstPixelBorder;
firstPixelBorder.set(0.f, 0.f);
uint32 nbPixelsBorder = 0;
for(uint32 y=0; y<numLines; y++)
{
bool value = (bordersPixels.find(CVector2f((float)x, (float)y))!=bordersPixels.end());
if(value)
{
if(!lastValue)
{
firstPixelBorder = CVector2f((float)x, (float)y);
}
nbPixelsBorder ++;
}
else if(lastValue)
{
// store border line
if(nbPixelsBorder !=1) //line instead of column
{
bool left = false;
bool right = false;
if(x>0)
{
for(uint32 yc=(uint32)firstPixelBorder.y; yc<(uint32)(firstPixelBorder.y+nbPixelsBorder); yc++)
{
if(resultBuffer[yc*lineLength+x-1]==(TBufferEntry)(5*255))
{
left = true;
break;
}
}
}
if(x+1<lineLength)
{
for(uint32 yc=(uint32)firstPixelBorder.y; yc<(uint32)(firstPixelBorder.y+nbPixelsBorder); yc++)
{
if(resultBuffer[yc*lineLength+x+1]==(TBufferEntry)(5*255))
{
right = true;
break;
}
}
}
// LEFT
if(left)
leftBorders[firstPixelBorder] =nbPixelsBorder;
// RIGHT
if(right)
rightBorders[firstPixelBorder] =nbPixelsBorder;
}
nbPixelsBorder =0;
}
lastValue = value;
}
}
//-----------------------------------------------------------------------------
// attenuate borders
// bottom and top borders (lines)
for (uint32 y=0;y<numLines;++y)
{
uint32 lineOffset= y* lineLength;
for (uint32 x=0;x<lineLength;++x)
{
uint32 offset = lineOffset+x;
CVector2f firstPixelBorder((float)x, (float)y);
// BOTTOM
if(bottomBorders.find(CVector2f((float)x, (float)y))!=bottomBorders.end())
{
uint32 nbPixelsBorder = bottomBorders[firstPixelBorder];
uint32 xc;
for(xc=(uint32)firstPixelBorder.x; xc<(uint32)(firstPixelBorder.x+nbPixelsBorder); xc++)
{
uint nbZones = (uint)(nbPixelsBorder/160)+1;
uint period = (uint)(nbPixelsBorder/(2*nbZones));
double noiseValue = (1-cos(((xc-firstPixelBorder.x)*Pi)/period))*5;
double evalNoise = 7 + noiseValue;
double diffAlpha = (255.0-limitValue)/evalNoise;
uint32 yc = y-1;
while((yc>=(uint32)(y-evalNoise)) && yc>=0)
{
uint16 newValue = (TBufferEntry)(5*(limitValue + diffAlpha*(y-yc)));
uint16 currentValue = (TBufferEntry)resultBuffer[yc*lineLength+xc];
if(newValue<currentValue)
resultBuffer[yc*lineLength+xc] = (TBufferEntry)(5*(limitValue + diffAlpha*(y-yc)));
yc--;
}
}
x=xc;
}
// TOP
if(topBorders.find(CVector2f((float)x, (float)y))!=topBorders.end())
{
uint32 nbPixelsBorder = topBorders[firstPixelBorder];
uint32 xc;
for(xc=(uint32)firstPixelBorder.x; xc<=(uint32)(firstPixelBorder.x+nbPixelsBorder); xc++)
{
uint nbZones = (uint)(nbPixelsBorder/160)+1;
uint period = (uint)(nbPixelsBorder/(2*nbZones));
double noiseValue = (1-cos(((xc-firstPixelBorder.x)*Pi)/period))*5;
double evalNoise = 7 + noiseValue;
double diffAlpha = (255.0-limitValue)/evalNoise;
uint32 yc = y+1;
while((yc<=(uint32)(y+evalNoise)) && yc<numLines)
{
uint16 newValue = (TBufferEntry)(5*(limitValue + diffAlpha*(yc-y)));
uint16 currentValue = (TBufferEntry)resultBuffer[yc*lineLength+xc];
if(newValue<currentValue)
resultBuffer[yc*lineLength+xc] = (TBufferEntry)(5*(limitValue + diffAlpha*(yc-y)));
yc++;
}
}
x=xc;
}
}
}
// left and right borders (columns)
for (uint32 x=0;x<lineLength;++x)
{
for (uint32 y=0; y<numLines; y++)
{
CVector2f firstPixelBorder((float)x, (float)y);
// LEFT
if(leftBorders.find(CVector2f((float)x, (float)y))!=leftBorders.end())
{
uint32 nbPixelsBorder = leftBorders[firstPixelBorder];
uint32 yc;
for(yc=(uint32)firstPixelBorder.y; yc<(uint32)(firstPixelBorder.y+nbPixelsBorder); yc++)
{
uint nbZones = (uint)(nbPixelsBorder/160)+1;
uint period = (uint)(nbPixelsBorder/(2*nbZones));
double noiseValue = (1-cos(((yc-firstPixelBorder.y)*Pi)/period))*5;
double evalNoise = 7 + noiseValue;
double diffAlpha = (255.0-limitValue)/evalNoise;
uint32 xc = x-1;
while((xc>=(uint32)(x-evalNoise)) && xc>=0)
{
uint16 newValue = (TBufferEntry)(5*(limitValue + diffAlpha*(x-xc)));
uint16 currentValue = (TBufferEntry)resultBuffer[yc*lineLength+xc];
if(newValue<currentValue)
resultBuffer[yc*lineLength+xc] = (TBufferEntry)(5*(limitValue + diffAlpha*(x-xc)));
xc--;
}
}
y=yc;
}
// RIGHT
if(rightBorders.find(CVector2f((float)x, (float)y))!=rightBorders.end())
{
uint32 nbPixelsBorder = rightBorders[firstPixelBorder];
uint32 yc;
for(yc=(uint32)firstPixelBorder.y; yc<=(uint32)(firstPixelBorder.y+nbPixelsBorder); yc++)
{
uint nbZones = (uint)(nbPixelsBorder/160)+1;
uint period = (uint)(nbPixelsBorder/(2*nbZones));
double noiseValue = (1-cos(((yc-firstPixelBorder.y)*Pi)/period))*5;
double evalNoise = 7 + noiseValue;
double diffAlpha = (255.0-limitValue)/evalNoise;
uint32 xc = x+1;
while((xc<=(uint32)(x+evalNoise)) && xc<lineLength)
{
uint16 newValue = (TBufferEntry)(5*(limitValue + diffAlpha*(xc-x)));
uint16 currentValue = (TBufferEntry)resultBuffer[yc*lineLength+xc];
if(newValue<currentValue)
resultBuffer[yc*lineLength+xc] = (TBufferEntry)(5*(limitValue + diffAlpha*(xc-x)));
xc++;
}
}
y=yc;
}
}
}
}
//--------------------------------------------------------------------------------
void CScreenshotIslands::loadIslands()
{
// load entryPoints
map< string, CVector2f > islands;
CScenarioEntryPoints scenarioEntryPoints = CScenarioEntryPoints::getInstance();
scenarioEntryPoints.loadFromFile();
const CScenarioEntryPoints::TEntryPoints& entryPoints = scenarioEntryPoints.getEntryPoints();
CScenarioEntryPoints::TEntryPoints::const_iterator entry(entryPoints.begin()), entryPoint(entryPoints.end());
for( ; entry != entryPoint ; ++entry)
{
islands[entry->Island] = CVector2f((float)entry->X, (float)entry->Y);
}
// search islands of each continent
map< string, CVector2f >::iterator itIsland(islands.begin()), lastIsland(islands.end());
for( ; itIsland != lastIsland ; ++itIsland)
{
const CVector2f & entryPoint = itIsland->second;
// search continent of this island
TContinentsData::iterator itCont(_ContinentsData.begin()), lastCont(_ContinentsData.end());
for( ; itCont != lastCont ; ++itCont)
{
CContinentData & continent = itCont->second;
CVector2f zoneMax = continent.ZoneMax;
CVector2f zoneMin = continent.ZoneMin;
if((zoneMin.x <= entryPoint.x) && (entryPoint.x <= zoneMax.x)
&& (zoneMax.y <= entryPoint.y) && (entryPoint.y <= zoneMin.y))
{
continent.Islands.push_back(itIsland->first);
break;
}
}
}
// search data of each island
TContinentsData::iterator itCont(_ContinentsData.begin()), lastCont(_ContinentsData.end());
for( ; itCont != lastCont ; ++itCont)
{
string aiFileName = itCont->first+"_0.cwmap2";
const CContinentData & continent = itCont->second;
CProximityMapBuffer continentBuffer;
continentBuffer.load(CPath::lookup(aiFileName));
CProximityMapBuffer::TZones zones;
continentBuffer.calculateZones(zones);
for (uint32 i=0;i<zones.size();++i)
{
TBuffer zoneBuffer;
continentBuffer.generateZoneProximityMap(zones[i], zoneBuffer);
TBuffer cleanBuffer;
processProximityBuffer(zoneBuffer, zones[i].getZoneWidth(), cleanBuffer);
string fileName;
list< string >::const_iterator itIsland(continent.Islands.begin()), lastIsland(continent.Islands.end());
for( ; itIsland != lastIsland ; ++itIsland)
{
const CVector2f & entryPoint = islands[*itIsland];
sint32 xmin = zones[i].getBoundXMin();
sint32 xmax = zones[i].getBoundXMax();
sint32 ymin = zones[i].getBoundYMin();
sint32 ymax = zones[i].getBoundYMax();
if((xmin <= entryPoint.x) && (entryPoint.x <= xmax)
&& (ymin <= entryPoint.y) && (entryPoint.y <= ymax))
{
fileName = _OutDirectory + "/" + *itIsland + "_prox.tga";
_IslandsData[*itIsland] = zones[i];
break;
}
}
// write the processed proximity map to an output file
if(!fileName.empty())
{
writeProximityBufferToTgaFile(fileName, cleanBuffer, zones[i].getZoneWidth(), zones[i].getZoneHeight());
_TempFileNames.push_back(fileName);
fileName = _OutDirectory + "/" + *itIsland + "_limit.tga";
writeProximityBufferToTgaFile(fileName, zoneBuffer, zones[i].getZoneWidth(), zones[i].getZoneHeight());
_TempFileNames.push_back(fileName);
}
else
{
nlinfo("Zone of island not found, tga not build");
}
}
}
CScenarioEntryPoints::TCompleteIslands completeIslands(entryPoints.size());
uint completeIslandsNb = 0;
for(uint e=0; e<entryPoints.size(); e++)
{
const CScenarioEntryPoints::CEntryPoint & entry = entryPoints[e];
CScenarioEntryPoints::CCompleteIsland completeIsland;
completeIsland.Island = entry.Island;
completeIsland.Package = entry.Package;
for(itCont=_ContinentsData.begin(); itCont!=_ContinentsData.end(); ++itCont)
{
list< string >::const_iterator itIsland(itCont->second.Islands.begin()), lastIsland(itCont->second.Islands.end());
for( ; itIsland != lastIsland ; ++itIsland)
{
if(*itIsland == entry.Island)
{
completeIsland.Continent = CSString(itCont->first);
if(_IslandsData.find(entry.Island)!=_IslandsData.end())
{
completeIsland.XMin = _IslandsData[entry.Island].getBoundXMin();
completeIsland.YMin = _IslandsData[entry.Island].getBoundYMin();
completeIsland.XMax = _IslandsData[entry.Island].getBoundXMax();
completeIsland.YMax = _IslandsData[entry.Island].getBoundYMax();
completeIslands[completeIslandsNb] = completeIsland;
completeIslandsNb++;
}
break;
}
}
}
}
completeIslands.resize(completeIslandsNb);
CScenarioEntryPoints::getInstance().saveXMLFile(completeIslands, _CompleteIslandsFile);
}
//--------------------------------------------------------------------------------
void CScreenshotIslands::getBuffer(UScene * scene, ULandscape * landscape, CBitmap &btm)
{
//
if (ScreenShotWidth && ScreenShotHeight)
{
UCamera camera = scene->getCam();
// Destination image
CBitmap dest;
btm.resize(ScreenShotWidth, ScreenShotHeight, CBitmap::RGBA);
uint windowWidth = driver->getWindowWidth();
uint windowHeight = driver->getWindowHeight();
uint top;
uint bottom = min(windowHeight, ScreenShotHeight);
for (top=0; top<ScreenShotHeight; top+=windowHeight)
{
uint left;
uint right = std::min(windowWidth, ScreenShotWidth);
for(left=0; left<ScreenShotWidth; left+=windowWidth)
{
driver->clearBuffers(_BackColor);
// store initial frustum and viewport
CFrustum Frustum = scene->getCam().getFrustum();
CViewport Viewport = scene->getViewport();
// Build a new frustum
CFrustum frustumPart;
frustumPart.Left = Frustum.Left+(Frustum.Right-Frustum.Left)*((float)left/(float)ScreenShotWidth);
frustumPart.Right = Frustum.Left+(Frustum.Right-Frustum.Left)*((float)right/(float)ScreenShotWidth);
frustumPart.Top = ceil(Frustum.Top+(Frustum.Bottom-Frustum.Top)*((float)top/(float)ScreenShotHeight));
frustumPart.Bottom = ceil(Frustum.Top+(Frustum.Bottom-Frustum.Top)*((float)bottom/(float)ScreenShotHeight));
frustumPart.Near = Frustum.Near;
frustumPart.Far = Frustum.Far;
frustumPart.Perspective = Frustum.Perspective;
// Build a new viewport
CViewport viewport;
viewport.init(0, 0, (float)(right-left)/windowWidth,
(float)(bottom-top)/windowHeight);
// Activate all this
scene->getCam().setFrustum(frustumPart);
scene->setViewport(viewport);
scene->setMaxSkeletonsInNotCLodForm(1000000);
scene->setPolygonBalancingMode(UScene::PolygonBalancingOff);
if(_InverseZTest)
{
// render scene with inversed ZBuffer test (keep greater distances)
driver->setColorMask(false, false, false, false);
sceneMaterial.setZFunc(UMaterial::less);
// initialize ZBuffer with leak value
driver->setMatrixMode2D11();
CQuad quad;
quad.V0 = CVector(0.0, 0.0, 0.0);
quad.V1 = CVector(1.0, 0.0, 0.0);
quad.V2 = CVector(1.0, 1.0, 0.0);
quad.V3 = CVector(0.0, 1.0, 0.0);
driver->drawQuad(quad, sceneMaterial);
driver->setMatrixMode3D(camera);
driver->setColorMask(true, true, true, true);
scene->enableElementRender(UScene::FilterWater, false);
}
scene->render();
// display vegetables with normal ZBuffer test
if(_InverseZTest && _Vegetation)
{
scene->enableElementRender(UScene::FilterWater, false);
scene->enableElementRender(UScene::FilterLandscape, false);
scene->enableElementRender(UScene::FilterWater, true);
scene->render();
scene->enableElementRender(UScene::FilterLandscape, true);
}
// Get the bitmap
driver->getBuffer(dest);
btm.blit(dest, 0, windowHeight-(bottom-top), right-left, bottom-top, left, top);
// restore camera
scene->getCam().setFrustum(Frustum);
scene->setViewport(Viewport);
driver->flush();
driver->swapBuffers();
// Next
right = std::min(right+windowWidth, ScreenShotWidth);
}
// Next
bottom = std::min(bottom+windowHeight, ScreenShotHeight);
}
}
else
{
driver->getBuffer(btm);
}
}
void CScreenshotIslands::buildIslandsTextures()
{
int loop = 0;
int maxLoop = 6;
// Create the window with config file values
driver->setDisplay(UDriver::CMode(512, 512, 32, true));
// Create a scene
UScene * scene = driver->createScene(true);
scene->animate(CTime::ticksToSecond(CTime::getPerformanceTime()));
scene->setMaxSkeletonsInNotCLodForm(1000000);
scene->setPolygonBalancingMode(UScene::PolygonBalancingOff);
// Create a camera
UCamera camera = scene->getCam();
camera.setTransformMode(UTransformable::DirectMatrix);
// Create and load landscape
ULandscape * landscape = scene->createLandscape();
landscape->setThreshold(0.0005);
if(_InverseZTest)
{
landscape->setZFunc(UMaterial::greaterequal);
}
else
{
landscape->setZFunc(UMaterial::less);
}
//Iteration on seasons
list< string >::iterator itSeason(_SeasonSuffixes.begin()), lastSeason(_SeasonSuffixes.end());
for( ; itSeason != lastSeason ; ++itSeason)
{
string seasonSuffix = *itSeason;
sint season = -1;
if (seasonSuffix == "_sp") season = CSeason::Spring;
else if (seasonSuffix == "_su") season = CSeason::Summer;
else if (seasonSuffix == "_au") season = CSeason::Autumn;
else if (seasonSuffix == "_wi") season = CSeason::Winter;
if (season == -1)
{
nlwarning("Unknown season suffix %s, skipping...", seasonSuffix.c_str());
continue;
}
// Iterations on Continents
TContinentsData::iterator itCont(_ContinentsData.begin()), lastCont(_ContinentsData.end());
for( ; itCont != lastCont ; ++itCont)
{
const CContinentData & continent = itCont->second;
// Light init
landscape->setupStaticLight(continent.Diffuse, continent.Ambiant, 1.0f);
string coarseMeshFile = continent.CoarseMeshMap;
string coarseMeshWithoutExt = CFile::getFilenameWithoutExtension(coarseMeshFile);
string coarseMeshExt = CFile::getExtension(coarseMeshFile);
coarseMeshFile = coarseMeshWithoutExt + seasonSuffix + "." + coarseMeshExt;
nldebug("Coarse mesh texture: '%s'", coarseMeshFile.c_str());
scene->setCoarseMeshManagerTexture(coarseMeshFile.c_str());
// Load the landscape
string farBank = continent.FarBank;
string farBankWithoutExt = CFile::getFilenameWithoutExtension(farBank);
string farBankExt = CFile::getExtension(farBank);
farBank = farBankWithoutExt + seasonSuffix + "." + farBankExt;
landscape->loadBankFiles(continent.SmallBank, farBank);
// Load vegatables
LandscapeIGManager.initIG(scene, continent.IGFile, driver, season, NULL);
// Iterations on Islands
list< string >::const_iterator itIsland(continent.Islands.begin()), lastIsland(continent.Islands.end());
for( ; itIsland != lastIsland ; ++itIsland)
{
loop = 0;
if(_IslandsData.find(itIsland->c_str()) != _IslandsData.end())
{
const CProximityZone & islandData = _IslandsData[itIsland->c_str()];
sint32 xmin = islandData.getBoundXMin();
sint32 xmax = islandData.getBoundXMax();
sint32 ymin = islandData.getBoundYMin();
sint32 ymax = islandData.getBoundYMax();
float width = (float)(xmax-xmin);
float height = (float)(ymax-ymin);
ScreenShotWidth = (uint)(width*_MeterPixelSize);
ScreenShotHeight = (uint)(height*_MeterPixelSize);
// position in island center
float posx = ((float)(xmax+xmin))/2;
float posy = ((float)(ymax+ymin))/2;
CVector entryPos(posx, posy, 400);
// Setup camera
CMatrix startCamMatrix;
startCamMatrix.setPos(entryPos);
startCamMatrix.rotateX(-(float)Pi/2);
camera.setMatrix(startCamMatrix);
camera.setFrustum(width, height, -10000.0f, 10000.0f, false);
// init lanscape
landscape->postfixTileFilename(seasonSuffix.c_str());
while(loop<maxLoop)
{
// refresh lanscape
vector<string> zonesAdded;
vector<string> zonesRemoved;
IProgressCallback progress;
landscape->refreshAllZonesAround(camera.getMatrix().getPos(), 1000, zonesAdded, zonesRemoved, progress);
if(_Vegetation)
{
LandscapeIGManager.unloadArrayZoneIG(zonesRemoved);
LandscapeIGManager.loadArrayZoneIG(zonesAdded);
vector<string>::iterator itName(zonesAdded.begin()), lastName(zonesAdded.end());
for( ; itName != lastName ; ++itName)
{
UInstanceGroup * instanceGr = LandscapeIGManager.getIG(*itName);
if(instanceGr)
{
uint nbInst = instanceGr->getNumInstance();
for(uint i=0; i<instanceGr->getNumInstance(); i++)
{
instanceGr->setCoarseMeshDist(i, 100000);
instanceGr->setDistMax(i, 100000);
}
}
}
}
scene->animate(CTime::ticksToSecond(CTime::getPerformanceTime()));
// Clear all buffers
driver->clearBuffers(_BackColor);
if(_InverseZTest)
{
// render scene with inversed ZBuffer test (keep greater distances)
driver->setColorMask(false, false, false, false);
sceneMaterial.setZFunc(UMaterial::less);
// initialize ZBuffer with leak value
driver->setMatrixMode2D11();
CQuad quad;
quad.V0 = CVector(0.0, 0.0, 0.0);
quad.V1 = CVector(1.0, 0.0, 0.0);
quad.V2 = CVector(1.0, 1.0, 0.0);
quad.V3 = CVector(0.0, 1.0, 0.0);
driver->drawQuad(quad, sceneMaterial);
driver->setMatrixMode3D(camera);
driver->setColorMask(true, true, true, true);
scene->enableElementRender(UScene::FilterWater, false);
}
scene->render();
// display vegetables with normal ZBuffer test
if(_InverseZTest && _Vegetation)
{
scene->enableElementRender(UScene::FilterLandscape, false);
scene->enableElementRender(UScene::FilterWater, true);
scene->render();
scene->enableElementRender(UScene::FilterLandscape, true);
}
// Swap 3d buffers
driver->flush();
driver->swapBuffers();
// Pump user input messages
driver->EventServer.pump();
loop += 1;
// Screenshot
if(loop==maxLoop-1)
{
CBitmap islandBitmap;
getBuffer(scene, landscape, islandBitmap);
buildBackTextureHLS(*itIsland, islandBitmap);
}
if(loop==maxLoop)
{
// create srcennshot bitmap of full island
CBitmap islandBitmap;
getBuffer(scene, landscape, islandBitmap);
attenuateIslandBorders(*itIsland, islandBitmap, islandData);
// load proximity bitmap
CBitmap proxBitmap;
std::string proxFileName = _OutDirectory + "/" + *itIsland + "_prox.tga";
CIFile proxFS(proxFileName.c_str());
proxBitmap.load(proxFS);
// resize proximity bitmap
CBitmap tempBitmap;
int newWidth = islandBitmap.getWidth();
int newHeight = islandBitmap.getHeight();
tempBitmap.resize(newWidth, newHeight, islandBitmap.PixelFormat);
// blit src bitmap
//tempBitmap.blit(proxBitmap, 0, 0, newWidth, newHeight, 0, 0);
{
const uint8 *prox = &(proxBitmap.getPixels(0)[0]);
uint8 *temp = &(tempBitmap.getPixels(0)[0]);
for (uint y = 0; y < newHeight; ++y)
for (uint x = 0; x < newWidth; ++x)
{
uint ys = (y * proxBitmap.getHeight()) / newHeight;
uint xs = (x * proxBitmap.getWidth()) / newWidth;
uint addr = ((y * newWidth) + x) * 4;
uint addrs = ((ys * proxBitmap.getWidth()) + xs) * 4;
temp[addr] = prox[addrs];
temp[addr+1] = prox[addrs+1];
temp[addr+2] = prox[addrs+2];
temp[addr+3] = prox[addrs+3];
}
}
// swap them
proxBitmap.resize(newWidth, newHeight, proxBitmap.PixelFormat);
proxBitmap.swap(tempBitmap);
//proxBitmap.resample(newWidth, newHeight);
// create final bitmap
CBitmap bitmapDest;
bitmapDest.resize(islandBitmap.getWidth(), islandBitmap.getHeight(), islandBitmap.PixelFormat);
// mix black and full island bitmaps with blend factor of proximity bitmap pixels
uint numPix = islandBitmap.getWidth() * islandBitmap.getHeight();
const uint8 *alphaProx = &(proxBitmap.getPixels(0)[0]);
const uint8 *srcIsland = &(islandBitmap.getPixels(0)[0]);
uint8 *dest = &(bitmapDest.getPixels(0)[0]);
const uint8 *srcBack = &(_BackBitmap.getPixels(0)[0]);
uint8 *endDest = dest + (numPix << 2);
do
{
uint invblendFact = (uint) alphaProx[0];
uint blendFact = 256 - invblendFact;
// blend 4 component at each pass
*dest = (uint8) (((blendFact * *srcIsland) + (invblendFact * *srcBack)) >> 8);
*(dest + 1) = (uint8) (((blendFact * *(srcIsland + 1)) + (invblendFact * *(srcBack + 1))) >> 8);
*(dest + 2) = (uint8) (((blendFact * *(srcIsland + 2)) + (invblendFact * *(srcBack + 2))) >> 8);
*(dest + 3) = (uint8) 255;
alphaProx = alphaProx + 4;
srcIsland = srcIsland + 4;
dest = dest + 4;
srcBack = srcBack + 4;
}
while(dest != endDest);
// create tga file of avoidable place in island
string textureName = _OutDirectory + "/" + *itIsland + seasonSuffix + ".tga";
CBitmap bitmapLittle;
bitmapLittle.resize(bitmapDest.getWidth(), bitmapDest.getHeight(), bitmapDest.PixelFormat);
bitmapLittle = bitmapDest;
if(!isPowerOf2(bitmapDest.getWidth()) || !isPowerOf2(bitmapDest.getHeight()) )
{
uint pow2w = NLMISC::raiseToNextPowerOf2(bitmapDest.getWidth());
uint pow2h = NLMISC::raiseToNextPowerOf2(bitmapDest.getHeight());
CBitmap enlargedBitmap;
enlargedBitmap.resize(pow2w, pow2h, bitmapDest.PixelFormat);
// blit src bitmap
enlargedBitmap.blit(&bitmapDest, 0, 0);
// swap them
bitmapDest.swap(enlargedBitmap);
}
COFile fsDest(textureName.c_str());
bitmapDest.writeTGA(fsDest,32);
// little tga
bitmapLittle.resample(bitmapLittle.getWidth()/10, bitmapLittle.getHeight()/10);
if(!isPowerOf2(bitmapLittle.getWidth()) || !isPowerOf2(bitmapLittle.getHeight()) )
{
uint pow2w = NLMISC::raiseToNextPowerOf2(bitmapLittle.getWidth());
uint pow2h = NLMISC::raiseToNextPowerOf2(bitmapLittle.getHeight());
CBitmap enlargedBitmap;
enlargedBitmap.resize(pow2w, pow2h, bitmapLittle.PixelFormat);
// blit src bitmap
enlargedBitmap.blit(&bitmapLittle, 0, 0);
// swap them
bitmapLittle.swap(enlargedBitmap);
}
textureName = _OutDirectory + "/" + *itIsland + seasonSuffix + "_little.tga";
COFile fsLittle(textureName.c_str());
bitmapLittle.writeTGA(fsLittle,32);
_BackColor = CRGBA(255, 255, 255, 255);
}
}
}
}
LandscapeIGManager.reset();
landscape->removeAllZones();
}
}
// remove proximity tga
list<string>::iterator itProx(_TempFileNames.begin()), lastProx(_TempFileNames.end());
for( ; itProx != lastProx ; ++itProx)
{
CFile::deleteFile(*itProx);
};
}
//--------------------------------------------------------------------------------
inline bool RGB2HSV(const CRGBA & rgba, uint & Hue, uint & Sat, uint & Val)
{
double Min_, Max_, Delta, H, S, V;
Min_ = min(min(rgba.R, rgba.G), rgba.B);
Max_ = max(max(rgba.R, rgba.G), rgba.B);
Delta = ( Max_ - Min_);
if(Max_ != 0.0)
{
S = 255.0*Delta/Max_;
}
else
{
Hue = 0;
Sat = 0;
Val = 0;
return false;
}
H = 0.0;
V = Max_;
if(rgba.R == Max_)
{
H = (rgba.G - rgba.B) / Delta;
}
else if(rgba.G == Max_)
{
H = 2.0 + (rgba.B - rgba.R) / Delta;
}
else
{
H = 4.0 + (rgba.R - rgba.G) / Delta;
}
H = H * 60;
if(H < 0.0)
{
H = H + 360.0;
}
Hue = (uint)H ; // Hue -> 0..360
Sat = (uint)S * 100 / 255; // Saturation -> 0..100 %
Val = (uint)V * 100 / 255; // Value - > 0..100 %
return true;
}
//-------------------------------------------------------------------------------------------------
inline bool infHLS(const CRGBA & rgba1, const CRGBA & rgba2)
{
uint h1, s1, v1, h2, s2, v2;
RGB2HSV(rgba1, h1, s1, v1);
RGB2HSV(rgba2, h2, s2, v2);
if(h1 != h2)
{
return (h1 < h2);
}
else if(s1 != s2)
{
return (s1 < s2);
}
else
{
return (v1 < v2);
}
}
//-------------------------------------------------------------------------------------------------
void CScreenshotIslands::buildBackTextureHLS(const std::string & islandName, const CBitmap & islandBitmap)
{
// load limit bitmap
CBitmap limBitmap;
std::string limFileName = _OutDirectory + "/" + islandName + "_limit.tga";
CIFile limFS(limFileName.c_str());
limBitmap.load(limFS);
list< CRGBA > limitPixels;
// search for colors of limit pixels
for(uint x=0; x<islandBitmap.getWidth(); x++)
{
for(uint y=0; y<islandBitmap.getHeight(); y++)
{
CRGBA lim = limBitmap.getPixelColor(x, y);
if((lim == CRGBA::White) && (islandBitmap.getPixelColor(x, y)!=CRGBA::White))
{
limitPixels.push_back(islandBitmap.getPixelColor(x, y));
}
}
}
// HLS order
list< CRGBA > sortedHLS;
list< CRGBA >::iterator itCol, itHLS;
bool inserted = false;
for(itCol=limitPixels.begin(); itCol!=limitPixels.end(); itCol++)
{
inserted = false;
for(itHLS=sortedHLS.begin(); itHLS!=sortedHLS.end(); ++itHLS)
{
if(infHLS(*itCol, *itHLS))
{
sortedHLS.insert(itHLS, *itCol);
inserted = true;
break;
}
}
if(inserted==false) sortedHLS.push_back(*itCol);
}
// keep more filled eighth of circle
nlassert(!sortedHLS.empty()); // If it crashes here, you may be missing .zonel's.
itHLS = sortedHLS.begin();
uint h, s, v;
RGB2HSV(*itHLS, h, s, v);
list< CRGBA > currentList, maxList;
for(uint i=0; i<8; i++)
{
while(itHLS!=sortedHLS.end() && h<i*45)
{
currentList.push_back(*itHLS);
RGB2HSV(*itHLS, h, s, v);
++itHLS;
}
if(currentList.size() > maxList.size())
{
maxList.clear();
maxList = currentList;
currentList.clear();
}
}
vector< CRGBA > sortedColors(maxList.size());
uint colorsNb = 0;
CRGBA lastColor(0, 0, 0, 0);
CRGBA maxColor;
uint maxColorNb = 0;
uint currentColorNb = 0;
for(itHLS=maxList.begin(); itHLS!=maxList.end(); ++itHLS)
{
if(lastColor==*itHLS)
{
currentColorNb++;
}
else
{
currentColorNb = 1;
}
if(currentColorNb>maxColorNb)
{
maxColorNb = currentColorNb;
maxColor = *itHLS;
}
lastColor = *itHLS;
RGB2HSV(*itHLS, h, s, v);
if(v>25 && v<75 && s>25 && s<75)
{
sortedColors[colorsNb] = *itHLS;
colorsNb++;
}
}
if(colorsNb < 5)
{
colorsNb = 0;
for(itHLS=maxList.begin(); itHLS!=maxList.end(); ++itHLS)
{
sortedColors[colorsNb] = *itHLS;
colorsNb++;
}
}
sortedColors.resize(colorsNb);
_BackBitmap.resize(islandBitmap.getWidth(), islandBitmap.getHeight(), islandBitmap.PixelFormat);
if(sortedColors.size()!=0)
{
_BackColor = maxColor;
CRandom randomGenerator;
uint8 * backPixels = &(_BackBitmap.getPixels(0)[0]);
for(uint x=0; x<_BackBitmap.getWidth(); x++)
{
for(uint y=0; y<_BackBitmap.getHeight(); y++)
{
sint32 randomVal = randomGenerator.rand(colorsNb-1);
const CRGBA & color = sortedColors[randomVal];
*backPixels = (uint8) color.R;
*(backPixels + 1) = (uint8) color.G;
*(backPixels + 2) = (uint8) color.B;
*(backPixels + 3) = (uint8) 255;
backPixels = backPixels+4;
}
}
}
/*
//TEST
CBitmap HLSBitmap;
HLSBitmap.resize(640, sortedColors.size()*4, islandBitmap.PixelFormat);
uint8 * hlsPixels = &(HLSBitmap.getPixels(0)[0]);
for(uint i=0; i < sortedColors.size(); i++)
{
uint count = 0;
while(count<640*4)
{
*hlsPixels = (uint8) sortedColors[i].R;
*(hlsPixels + 1) = (uint8) sortedColors[i].G;
*(hlsPixels + 2) = (uint8) sortedColors[i].B;
*(hlsPixels + 3) = (uint8) sortedColors[i].A;
hlsPixels = hlsPixels+4;
count++;
}
}
string textureName = _OutDirectory + "/" + islandName + "_HLS2.tga";
COFile fsHLS(textureName.c_str());
HLSBitmap.writeTGA(fsHLS,32);
*/
}
//--------------------------------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------
// methods CProximityMapBuffer
//-------------------------------------------------------------------------------------------------
void CProximityMapBuffer::load(const std::string& name)
{
// load the AI collision map file
CWorldMap worldMap;
CIFile f(name);
f.serial(worldMap);
// lookup the map bounds
CMapPosition min, max;
worldMap.getBounds(min, max);
// calculate a handful of constants relating to the bounds of the image...
_ScanWidth = max.x()-min.x();
_ScanHeight = max.y()-min.y();
_XOffset= min.x();
_YOffset= (sint16)min.y();
// redimension buffer to correct size
_Buffer.resize(_ScanWidth*_ScanHeight);
// setup a position variable to mark the start point of each line
CMapPosition scanpos(min.x(),min.y());
// iterate over the scan area looking for points that are accessible
for (uint32 y=0; y<_ScanHeight; ++y, scanpos = scanpos.getStepN())
{
CMapPosition pos(scanpos);
// scan a line of the map
for (uint32 x=0; x<_ScanWidth; ++x, pos = pos.getStepE())
{
bool isAccessible= false;
// if the cell pointer is NULL it means that the 16x16 cell in question is inaccessible
if (worldMap.getRootCellCst(pos) != NULL)
{
// run through the surfaces in the cell looking for a match for this position (may be as many as 3 surfaces per cell max)
for (uint32 ns=0; ns<3; ++ns)
{
isAccessible |= worldMap.getSafeWorldPosition(pos, CSlot(ns)).isValid();
}
}
// setup the next pixel in the output buffers...
_Buffer[y*_ScanWidth+x]= (isAccessible? 0:std::numeric_limits<TBufferEntry>::max());
}
}
}
//-------------------------------------------------------------------------------------------------
void CProximityMapBuffer::calculateZones(TZones& zones)
{
// clear out the result buffer before starting work
zones.clear();
// setup a container to hold the accessible points within this buffer
typedef std::set<uint32> TAccessiblePoints;
TAccessiblePoints accessiblePoints;
// start by building the set of all accessible points
for (uint32 i=0;i<_Buffer.size();++i)
{
if (_Buffer[i]==0)
accessiblePoints.insert(i);
}
// while there are still points remaining in the set we must have another zone to process
while (!accessiblePoints.empty())
{
// append a new zone to the zones vector and get a refference to it
zones.push_back( CProximityZone(_ScanWidth,_ScanHeight,_XOffset,_YOffset) );
CProximityZone& theZone= zones.back();
// setup a todo list representing points that are part of the surface that we are dealing with
// that haven't yet been treated to check for neighbours, etc
std::vector<uint32> todo;
// get hold of the first point in the accessilbe points set and push it onto the todo list
todo.push_back(*accessiblePoints.begin());
accessiblePoints.erase(todo.back());
// while we have more points to deal with ...
while (!todo.empty())
{
// pop the next point off the todo list
uint32 thePoint= todo.back();
todo.pop_back();
// add the point to the zone
theZone.add(thePoint);
// a little macro for the code to perform for each movement test...
#define TEST_MOVE(xoffs,yoffs)\
{\
TAccessiblePoints::iterator it= accessiblePoints.find(thePoint+xoffs+_ScanWidth*yoffs);\
if (it!=accessiblePoints.end())\
{\
todo.push_back(*it);\
accessiblePoints.erase(it);\
}\
}
// N, S, W, E moves
TEST_MOVE( 0, 1);
TEST_MOVE( 0,-1);
TEST_MOVE( 1, 0);
TEST_MOVE(-1, 0);
// NW, NE, WS, SE moves
TEST_MOVE( 1, 1);
TEST_MOVE(-1, 1);
TEST_MOVE( 1,-1);
TEST_MOVE(-1,-1);
#undef TEST_MOVE
}
}
nlinfo("Found %u zones",zones.size());
}
//-------------------------------------------------------------------------------------------------
void CProximityMapBuffer::_prepareBufferForZoneProximityMap(const CProximityZone& zone,TBuffer& zoneBuffer,TOffsetsVector& accessiblePoints)
{
// the length of runs that we consider too short to deal with...
const uint32 shortRunLength=5;
// redimention and initialise the zone buffer
uint32 zoneWidth= zone.getZoneWidth();
uint32 zoneHeight= zone.getZoneHeight();
zoneBuffer.clear();
zoneBuffer.resize(zoneWidth*zoneHeight, std::numeric_limits<TBufferEntry>::max());
// setup the buffer's accessible points and prime vects[0] with the set of accessible points in the zone buffer
for (uint32 i=0;i<zone.getOffsets().size();++i)
{
// lookup the next offset in the zone's offsets vector and remap to a zone-relative offset
uint32 zoneOffset= zone.remapOffset(zone.getOffsets()[i]);
// flag the appropriate entry in the zoneBuffer as 'distance=0'
zoneBuffer[zoneOffset]= 0;
// add the zone offset to the accessible points vector
accessiblePoints.push_back(zoneOffset);
}
// run through the zone buffer looking for points that are surrounded that we can just throw out...
// start by flagging all points that belong to a short run in the y direction
for (uint32 i=0;i<zoneWidth;++i)
{
// setup start and end offsets marking first and last 'zero' value pixels in the column
uint32 startOffset=i, endOffset=i+(zoneHeight-1)*zoneWidth;
for (; startOffset<endOffset && zoneBuffer[startOffset]!=0; startOffset+= zoneWidth) {}
for (; endOffset>startOffset && zoneBuffer[endOffset]!=0; endOffset-= zoneWidth) {}
for (uint32 offset=startOffset, marker=startOffset;offset<=endOffset;offset+=zoneWidth)
{
// see if this is an accessible position
if (zoneBuffer[offset]!=0)
{
zoneBuffer[offset]= InteriorValue;
if(offset-1>=startOffset && zoneBuffer[offset-1] == std::numeric_limits<TBufferEntry>::max())
{
zoneBuffer[offset-1] = ValueBorder;
}
if(offset+1<=endOffset && zoneBuffer[offset+1] == std::numeric_limits<TBufferEntry>::max())
{
zoneBuffer[offset+1] = ValueBorder;
}
}
}
}
// continue by dealing with all points that belong to a short run in the x direction
for (uint32 i=0;i<zoneHeight;++i)
{
// setup start and end offsets marking first and last 'zero' value pixels in the column
uint32 startOffset= i*zoneWidth;
uint32 endOffset= startOffset+zoneWidth-1;
uint32 startOffsetInit = startOffset;
uint32 endOffsetInit = endOffset;
for (; startOffset<endOffset && zoneBuffer[startOffset]!=0; ++startOffset) {}
for (; endOffset>startOffset && zoneBuffer[endOffset]!=0; --endOffset) {}
for (uint32 offset=startOffset, marker=startOffset;offset<=endOffset;++offset)
{
// see if this is an accessible position
if (zoneBuffer[offset]!=0)
{
zoneBuffer[offset]= InteriorValue;
if(offset>zoneWidth && zoneBuffer[offset-zoneWidth] == std::numeric_limits<TBufferEntry>::max())
{
zoneBuffer[offset-zoneWidth] = ValueBorder;
}
if(offset+zoneWidth<zoneHeight*zoneWidth && zoneBuffer[offset+zoneWidth] == std::numeric_limits<TBufferEntry>::max())
{
zoneBuffer[offset+zoneWidth] = ValueBorder;
}
}
}
}
}
//-------------------------------------------------------------------------------------------------
void CProximityMapBuffer::generateZoneProximityMap(const CProximityZone& zone,TBuffer& zoneBuffer)
{
// a set of vectors to hold sets of points that need to be treated
TOffsetsVector vects[16];
// a counter that should always contain sum of all vects[i].size()
uint32 entriesToTreat= 0;
// setup the buffer's accessible points and prime vects[0] with the set of accessible points in the zone buffer
_prepareBufferForZoneProximityMap(zone, zoneBuffer, vects[0]);
entriesToTreat= vects[0].size();
// lookup the buffer dimentions
uint32 zoneWidth= zone.getZoneWidth();
uint32 zoneHeight= zone.getZoneHeight();
// for dist=0 to ? treat points with distance 'dist' from centre, iterating until all vects are empty
for (TBufferEntry dist=0; entriesToTreat!=0; ++dist)
{
// setup refference to the vector that we are supposed to be iterating over for this dist
TOffsetsVector &vect= vects[dist&15];
// iterate over contents of points for this distance, treating NSWE neighbours
for(TOffsetsVector::iterator it=vect.begin(); it!=vect.end(); ++it)
{
uint32 val=(*it);
// deal with the case where this point has already been refferenced via a better route
if (zoneBuffer[val]<dist || (zoneBuffer[val]==InteriorValue && dist > BigValue)
|| (zoneBuffer[val]==ValueBorder && dist > BigValue))
continue;
// write the new distance into this buffer entry
zoneBuffer[val]=dist;
// decompose into x and y in order to manage identification of neighbour cells correctly
uint32 x= val % zoneWidth;
uint32 y= val / zoneWidth;
#define TEST_MOVE(xoffs,yoffs,newDist)\
{\
if (((uint32)(x+xoffs)<zoneWidth) && ((uint32)(y+yoffs)<zoneHeight))\
{\
uint32 newVal= val+xoffs+(yoffs*zoneWidth);\
bool isInterior = ((zoneBuffer[newVal] == InteriorValue && newDist > BigValue) || (zoneBuffer[newVal] == ValueBorder && newDist > BigValue));\
if (zoneBuffer[newVal] > newDist && !isInterior)\
{\
zoneBuffer[newVal] = newDist;\
vects[newDist & 15].push_back(newVal);\
++entriesToTreat;\
}\
}\
}
// N, S, W, E moves
TEST_MOVE( 0, 1,dist+5);
TEST_MOVE( 0,-1,dist+5);
TEST_MOVE( 1, 0,dist+5);
TEST_MOVE(-1, 0,dist+5);
// NW, NE, WS, SE moves
TEST_MOVE( 1, 1,dist+7);
TEST_MOVE(-1, 1,dist+7);
TEST_MOVE( 1,-1,dist+7);
TEST_MOVE(-1,-1,dist+7);
// NNW, NNE, SSW, SSE moves
TEST_MOVE( 1, 2,dist+11);
TEST_MOVE(-1, 2,dist+11);
TEST_MOVE( 1,-2,dist+11);
TEST_MOVE(-1,-2,dist+11);
// WNW, WSW, ENE, ESE moves
TEST_MOVE( 2, 1,dist+11);
TEST_MOVE(-2, 1,dist+11);
TEST_MOVE( 2,-1,dist+11);
TEST_MOVE(-2,-1,dist+11);
#undef TEST_MOVE
}
// clear out the vector
entriesToTreat-= vect.size();
vect.clear();
}
}
//-------------------------------------------------------------------------------------------------
const TBuffer& CProximityMapBuffer::getBuffer() const
{
return _Buffer;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityMapBuffer::getScanHeight() const
{
return _ScanHeight;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityMapBuffer::getScanWidth() const
{
return _ScanWidth;
}
//-----------------------------------------------------------------------------------------
//-----------------------------------------------------------------------------------------
//-------------------------------------------------------------------------------------------------
// methods CProximityZone
//-------------------------------------------------------------------------------------------------
CProximityZone::CProximityZone(uint32 scanWidth,uint32 scanHeight,sint32 xOffset, sint32 yOffset)
{
_ScanWidth = scanWidth;
_ScanHeight = scanHeight;
_XOffset = xOffset;
_YOffset = yOffset;
_MaxOffset = scanWidth * scanHeight -1;
_XMin = std::numeric_limits<uint32>::max();
_YMin = std::numeric_limits<uint32>::max();
_XMax = 0;
_YMax = 0;
_BorderPixels = 30;
}
//-------------------------------------------------------------------------------------------------
bool CProximityZone::add(uint32 offset)
{
// make sure the requested point is in the zone
if (offset>_MaxOffset)
return false;
// calculate the x and y coordinates of the point
uint32 y= offset/ _ScanWidth;
uint32 x= offset% _ScanWidth;
// update the bounding coordinates for this zone
if (x<_XMin) _XMin= x;
if (x>_XMax) _XMax= x;
if (y<_YMin) _YMin= y;
if (y>_YMax) _YMax= y;
// add the point to the vector of points
_Offsets.push_back(offset);
return true;
}
//-------------------------------------------------------------------------------------------------
const CProximityZone::TOffsets& CProximityZone::getOffsets() const
{
return _Offsets;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityZone::getZoneWidth() const
{
return getZoneXMax()- getZoneXMin() +1;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityZone::getZoneHeight() const
{
return getZoneYMax()- getZoneYMin() +1;
}
//-------------------------------------------------------------------------------------------------
sint32 CProximityZone::getZoneXMin() const
{
return _XMin-_BorderPixels;
}
//-------------------------------------------------------------------------------------------------
sint32 CProximityZone::getZoneYMin() const
{
return _YMin-_BorderPixels;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityZone::getZoneXMax() const
{
return _XMax+_BorderPixels;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityZone::getZoneYMax() const
{
return _YMax+_BorderPixels;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityZone::getBoundXMin() const
{
return _XMin+_XOffset-_BorderPixels;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityZone::getBoundYMin() const
{
return _YMin+_YOffset-_BorderPixels;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityZone::getBoundXMax() const
{
return _XMax+_XOffset+_BorderPixels;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityZone::getBoundYMax() const
{
return _YMax+_YOffset+_BorderPixels;
}
//-------------------------------------------------------------------------------------------------
uint32 CProximityZone::remapOffset(uint32 bufferOffset) const
{
// decompose input coordinates into x and y parts
uint32 bufferX= bufferOffset% _ScanWidth;
uint32 bufferY= bufferOffset/ _ScanWidth;
// remap the offset from a _Buffer-relative offset to a zone-relative offset
return bufferX-getZoneXMin()+ (bufferY-getZoneYMin())*getZoneWidth();
}
}