khanat-opennel-code/code/nel/src/3d/ps_mesh.cpp

2439 lines
68 KiB
C++
Raw Normal View History

// NeL - MMORPG Framework <http://dev.ryzom.com/projects/nel/>
// Copyright (C) 2010 Winch Gate Property Limited
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
#include "std3d.h"
#include "nel/3d/ps_mesh.h"
#include "nel/3d/ps_macro.h"
#include "nel/3d/shape.h"
#include "nel/3d/mesh.h"
#include "nel/3d/transform_shape.h"
#include "nel/3d/shape_bank.h"
#include "nel/3d/texture_mem.h"
#include "nel/3d/scene.h"
#include "nel/3d/ps_located.h"
#include "nel/3d/particle_system.h"
#include "nel/3d/particle_system_shape.h"
#include "nel/3d/particle_system_model.h"
#include "nel/3d/ps_iterator.h"
#include "nel/misc/stream.h"
#include "nel/misc/path.h"
namespace NL3D
{
////////////////////
// static members //
////////////////////
CPSConstraintMesh::CMeshDisplayShare CPSConstraintMesh::_MeshDisplayShare(16);
CVertexBuffer CPSConstraintMesh::_PreRotatedMeshVB; // mesh has no normals
CVertexBuffer CPSConstraintMesh::_PreRotatedMeshVBWithNormal; // mesh has normals
CPSConstraintMesh::TMeshName2RamVB CPSConstraintMesh::_MeshRamVBs;
// this produce a random unit vector
static CVector MakeRandomUnitVect(void)
{
NL_PS_FUNC(MakeRandomUnitVect)
CVector v((float) ((rand() % 20000) - 10000)
,(float) ((rand() % 20000) - 10000)
,(float) ((rand() % 20000) - 10000)
);
v.normalize();
return v;
}
////////////////////////////
// CPSMesh implementation //
////////////////////////////
//====================================================================================
const std::string DummyShapeName("dummy mesh shape");
/** a private function that create a dummy mesh :a cube with dummy textures
*/
static CMesh *CreateDummyMesh(void)
{
NL_PS_FUNC(CreateDummyMesh)
CMesh::CMeshBuild mb;
CMeshBase::CMeshBaseBuild mbb;
mb.VertexFlags = CVertexBuffer::PositionFlag | CVertexBuffer::TexCoord0Flag;
mb.Vertices.push_back(CVector(-.5f, -.5f, -.5f));
mb.Vertices.push_back(CVector(.5f, -.5f, -.5f));
mb.Vertices.push_back(CVector(.5f, -.5f, .5f));
mb.Vertices.push_back(CVector(-.5f, -.5f, .5f));
mb.Vertices.push_back(CVector(-.5f, .5f, -.5f));
mb.Vertices.push_back(CVector(.5f, .5f, -.5f));
mb.Vertices.push_back(CVector(.5f, .5f, .5f));
mb.Vertices.push_back(CVector(-.5f, .5f, .5f));
// index for each face
uint32 tab[] = { 4, 1, 0,
4, 5, 1,
5, 2, 1,
5, 6, 2,
6, 3, 2,
6, 7, 3,
7, 0, 3,
7, 4, 0,
7, 5, 4,
7, 6, 5,
2, 0, 1,
2, 3, 0
};
for (uint k = 0; k < 6; ++k)
{
CMesh::CFace f;
f.Corner[0].Vertex = tab[6 * k];
f.Corner[0].Uvws[0] = NLMISC::CUVW(0, 0, 0);
f.Corner[1].Vertex = tab[6 * k + 1];
f.Corner[1].Uvws[0] = NLMISC::CUVW(1, 1, 0);
f.Corner[2].Vertex = tab[6 * k + 2];
f.Corner[2].Uvws[0] = NLMISC::CUVW(0, 1, 0);
f.MaterialId = 0;
mb.Faces.push_back(f);
f.Corner[0].Vertex = tab[6 * k + 3];
f.Corner[0].Uvws[0] = NLMISC::CUVW(0, 0, 0);
f.Corner[1].Vertex = tab[6 * k + 4];
f.Corner[1].Uvws[0] = NLMISC::CUVW(1, 0, 0);
f.Corner[2].Vertex = tab[6 * k + 5];
f.Corner[2].Uvws[0] = NLMISC::CUVW(1, 1, 0);
f.MaterialId = 0;
mb.Faces.push_back(f);
}
CMaterial mat;
CTextureMem *tex = new CTextureMem;
tex->makeDummy();
mat.setTexture(0, tex);
mat.setLighting(false);
mat.setColor(CRGBA::White);
mbb.Materials.push_back(mat);
CMesh *m = new CMesh;
m->build(mbb, mb);
return m;
}
//====================================================================================
void CPSMesh::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSMesh_IStream )
(void)f.serialVersion(3);
CPSParticle::serial(f);
CPSSizedParticle::serialSizeScheme(f);
CPSRotated3DPlaneParticle::serialPlaneBasisScheme(f);
CPSRotated2DParticle::serialAngle2DScheme(f);
f.serial(_Shape);
if (f.isReading())
{
uint maxSize = 0;
if (_Owner)
{
maxSize = _Owner->getMaxSize();
_Instances.resize(maxSize);
}
for(uint k = 0; k < maxSize; ++k)
{
_Instances.insert(NULL);
}
}
}
//====================================================================================
void CPSMesh::setShape(const std::string &shape)
{
NL_PS_FUNC(CPSMesh_setShape)
if (shape == _Shape) return;
_Shape = shape;
removeAllInstancesFromScene();
}
//====================================================================================
uint32 CPSMesh::getNumWantedTris() const
{
NL_PS_FUNC(CPSMesh_getNumWantedTris)
/// we don't draw any face ! (the meshs are drawn by the scene)
return 0;
}
//====================================================================================
bool CPSMesh::hasTransparentFaces(void)
{
NL_PS_FUNC(CPSMesh_hasTransparentFaces)
/// we don't draw any tri ! (the meshs are drawn by the scene)
return false;
}
//====================================================================================
bool CPSMesh::hasOpaqueFaces(void)
{
NL_PS_FUNC(CPSMesh_hasOpaqueFaces)
/// We don't draw any tri !
return false;
}
//====================================================================================
bool CPSMesh::hasLightableFaces()
{
NL_PS_FUNC(CPSMesh_hasLightableFaces)
/// we don't draw any tri ! (the meshs are drawn by the scene)
return false;
}
//====================================================================================
void CPSMesh::releaseAllRef()
{
NL_PS_FUNC(CPSMesh_releaseAllRef)
CPSParticle::releaseAllRef();
nlassert(_Owner && _Owner->getScene());
removeAllInstancesFromScene();
}
//====================================================================================
void CPSMesh::removeAllInstancesFromScene()
{
NL_PS_FUNC(CPSMesh_removeAllInstancesFromScene)
for(uint k = 0; k < _Instances.getSize(); ++k)
{
if (_Instances[k])
{
if (_Owner) _Owner->getScene()->deleteInstance(_Instances[k]);
_Instances[k] = NULL;
}
}
}
//====================================================================================
CTransformShape *CPSMesh::createInstance()
{
NL_PS_FUNC(CPSMesh_createInstance)
CScene *scene = _Owner->getScene();
nlassert(scene); // the setScene method of the particle system should have been called
CTransformShape *instance = scene->createInstance(_Shape);
if (!instance)
{
// mesh not found ...
IShape *is = CreateDummyMesh();
scene->getShapeBank()->add(DummyShapeName, is);
instance = scene->createInstance(DummyShapeName);
nlassert(instance);
}
instance->setTransformMode(CTransform::DirectMatrix);
instance->hide(); // the object hasn't the right matrix yet so we hide it. It'll be shown once it is computed
return instance;
}
//====================================================================================
void CPSMesh::newElement(const CPSEmitterInfo &info)
{
NL_PS_FUNC(CPSMesh_newElement)
newPlaneBasisElement(info);
newAngle2DElement(info);
newSizeElement(info);
nlassert(_Owner);
nlassert(_Owner->getOwner());
CTransformShape *instance = createInstance();
nlassert(instance);
_Instances.insert(instance);
}
//====================================================================================
void CPSMesh::deleteElement(uint32 index)
{
NL_PS_FUNC(CPSMesh_deleteElement)
deleteSizeElement(index);
deleteAngle2DElement(index);
deletePlaneBasisElement(index);
// check whether CTransformShape have been instanciated
nlassert(_Owner);
nlassert(_Owner->getOwner());
CScene *scene = _Owner->getScene();
nlassert(scene); // the setScene method of the particle system should have been called
if (_Instances[index])
{
scene->deleteInstance(_Instances[index]);
}
_Instances.remove(index);
}
//====================================================================================
void CPSMesh::step(TPSProcessPass pass)
{
NL_PS_FUNC(CPSMesh_step)
if (pass == PSMotion)
{
updatePos();
}
else
if (pass == PSToolRender) // edition mode only
{
showTool();
}
}
//====================================================================================
void CPSMesh::updatePos()
{
NL_PS_FUNC(CPSMesh_updatePos)
const uint MeshBufSize = 512;
PARTICLES_CHECK_MEM;
nlassert(_Owner);
const uint32 size = _Owner->getSize();
if (!size) return;
_Owner->incrementNbDrawnParticles(size); // for benchmark purpose
if (!_Instances[0])
{
for (uint k = 0; k < size; ++k)
{
nlassert(!_Instances[k]);
_Instances[k] = createInstance();
}
}
float sizes[MeshBufSize];
float angles[MeshBufSize];
static CPlaneBasis planeBasis[MeshBufSize];
uint32 leftToDo = size, toProcess;
float *ptCurrSize;
const uint ptCurrSizeIncrement = _SizeScheme ? 1 : 0;
float *ptCurrAngle;
const uint ptCurrAngleIncrement = _Angle2DScheme ? 1 : 0;
CPlaneBasis *ptBasis;
const uint ptCurrPlaneBasisIncrement = _PlaneBasisScheme ? 1 : 0;
TPSAttribVector::const_iterator posIt = _Owner->getPos().begin(), endPosIt;
TInstanceCont::iterator instanceIt = _Instances.begin();
do
{
toProcess = leftToDo < MeshBufSize ? leftToDo : MeshBufSize;
if (_SizeScheme)
{
ptCurrSize = (float *) (_SizeScheme->make(_Owner, size - leftToDo, &sizes[0], sizeof(float), toProcess, true));
}
else
{
ptCurrSize =& _ParticleSize;
}
if (_Angle2DScheme)
{
ptCurrAngle = (float *) (_Angle2DScheme->make(_Owner, size - leftToDo, &angles[0], sizeof(float), toProcess, true));
}
else
{
ptCurrAngle =& _Angle2D;
}
if (_PlaneBasisScheme)
{
ptBasis = (CPlaneBasis *) (_PlaneBasisScheme->make(_Owner, size - leftToDo, &planeBasis[0], sizeof(CPlaneBasis), toProcess, true));
}
else
{
ptBasis = &_PlaneBasis;
}
endPosIt = posIt + toProcess;
CMatrix mat, tmat;
// the matrix used to get in the right basis
const CMatrix &transfo = getLocalToWorldMatrix();
do
{
tmat.identity();
mat.identity();
tmat.translate(*posIt);
mat.setRot( ptBasis->X * CPSUtil::getCos((sint32) *ptCurrAngle) + ptBasis->Y * CPSUtil::getSin((sint32) *ptCurrAngle)
, ptBasis->X * CPSUtil::getCos((sint32) *ptCurrAngle + 64) + ptBasis->Y * CPSUtil::getSin((sint32) *ptCurrAngle + 64)
, ptBasis->X ^ ptBasis->Y
);
mat.scale(*ptCurrSize);
(*instanceIt)->setMatrix(transfo * tmat * mat);
if (CParticleSystem::OwnerModel)
{
// make sure the visibility is the same
if (CParticleSystem::OwnerModel->isHrcVisible())
{
(*instanceIt)->show();
}
else
{
(*instanceIt)->hide();
}
(*instanceIt)->setClusterSystem(CParticleSystem::OwnerModel->getClusterSystem());
}
++instanceIt;
++posIt;
ptCurrSize += ptCurrSizeIncrement;
ptCurrAngle += ptCurrAngleIncrement;
ptBasis += ptCurrPlaneBasisIncrement;
}
while (posIt != endPosIt);
leftToDo -= toProcess;
}
while (leftToDo);
PARTICLES_CHECK_MEM;
}
//====================================================================================
void CPSMesh::resize(uint32 size)
{
NL_PS_FUNC(CPSMesh_resize)
nlassert(size < (1 << 16));
resizeSize(size);
resizeAngle2D(size);
resizePlaneBasis(size);
if (size < _Instances.getSize())
{
for(uint k = size; k < _Instances.getSize(); ++k)
{
if (_Owner) _Owner->getScene()->deleteInstance(_Instances[k]);
}
}
_Instances.resize(size);
}
//====================================================================================
CPSMesh::~CPSMesh()
{
NL_PS_FUNC(CPSMesh_CPSMeshDtor)
if (_Owner && _Owner->getOwner())
{
removeAllInstancesFromScene();
}
else
{
#ifdef NL_DEBUG
for (TInstanceCont::iterator it = _Instances.begin(); it != _Instances.end(); ++it)
{
nlassert(*it == NULL); // there's a leak..:(
}
#endif
}
}
//////////////////////////////////////
// CPSConstraintMesh implementation //
//////////////////////////////////////
/// private : eval the number of triangles in a mesh
static uint getMeshNumTri(const CMesh &m)
{
NL_PS_FUNC(getMeshNumTri)
uint numFaces = 0;
for (uint k = 0; k < m.getNbMatrixBlock(); ++k)
{
for (uint l = 0; l < m.getNbRdrPass(k); ++l)
{
const CIndexBuffer pb = m.getRdrPassPrimitiveBlock(k, l);
numFaces += pb.getNumIndexes()/3;
}
}
return numFaces;
}
//====================================================================================
/// private use : check if there are transparent and / or opaque faces in a mesh
static void CheckForOpaqueAndTransparentFacesInMesh(const CMesh &m, bool &hasTransparentFaces, bool &hasOpaqueFaces)
{
NL_PS_FUNC(CheckForOpaqueAndTransparentFacesInMesh)
hasTransparentFaces = false;
hasOpaqueFaces = false;
for (uint k = 0; k < m.getNbRdrPass(0); ++k)
{
const CMaterial &currMat = m.getMaterial(m.getRdrPassMaterial(0, k));
if (!currMat.getZWrite())
{
hasTransparentFaces = true;
}
else // z-buffer write or no blending -> the face is opaque
{
hasOpaqueFaces = true;
}
}
}
//====================================================================================
/// private use : check if there are lightable faces in a mesh
static bool CheckForLightableFacesInMesh(const CMesh &m)
{
NL_PS_FUNC(CheckForLightableFacesInMesh)
for (uint k = 0; k < m.getNbRdrPass(0); ++k)
{
const CMaterial &currMat = m.getMaterial(m.getRdrPassMaterial(0, k));
if (currMat.isLighted()) return true;
}
return false;
}
/** Well, we could have put a method template in CPSConstraintMesh, but some compilers
* want the definition of the methods in the header, and some compilers
* don't want friend with function template, so we use a static method template of a friend class instead,
* which gives us the same result :)
*/
class CPSConstraintMeshHelper
{
public:
template <class T>
static void drawMeshs(T posIt, CPSConstraintMesh &m, uint size, uint32 srcStep, bool opaque)
{
NL_PS_FUNC(CPSConstraintMeshHelper_drawMeshs)
const CVertexBuffer &modelVb = m.getMeshVB(0);
// size for model vertices
const uint inVSize = modelVb.getVertexSize(); // vertex size
// driver setup
IDriver *driver = m.getDriver();
m.setupDriverModelMatrix();
// buffer to compute sizes
float sizes[ConstraintMeshBufSize];
float *ptCurrSize;
uint ptCurrSizeIncrement = m._SizeScheme ? 1 : 0;
T endPosIt;
uint leftToDo = size, toProcess;
/// get a vb in which to write. It has the same format than the input mesh, but can also have a color flag added
CPSConstraintMesh::CMeshDisplay &md= m._MeshDisplayShare.getMeshDisplay(m._Meshes[0], modelVb, modelVb.getVertexFormat()
| (m._ColorScheme ? CVertexBuffer::PrimaryColorFlag : 0));
m.setupRenderPasses((float) m._Owner->getOwner()->getSystemDate() - m._GlobalAnimDate, md.RdrPasses, opaque);
CVertexBuffer &outVb = md.VB;
const uint outVSize = outVb.getVertexSize();
// we don't have precomputed mesh there ... so each mesh must be transformed, which is the worst case
CPlaneBasis planeBasis[ConstraintMeshBufSize];
CPlaneBasis *ptBasis;
uint ptBasisIncrement = m._PlaneBasisScheme ? 1 : 0;
const uint nbVerticesInSource = modelVb.getNumVertices();
sint inNormalOff=0;
sint outNormalOff=0;
if (modelVb.getVertexFormat() & CVertexBuffer::NormalFlag)
{
inNormalOff = modelVb.getNormalOff();
outNormalOff = outVb.getNormalOff();
}
if (m._ColorScheme)
{
CVertexBuffer::TVertexColorType vtc = driver->getVertexColorFormat();
m._ColorScheme->setColorType(vtc);
if (modelVb.getVertexFormat() & CVertexBuffer::PrimaryColorFlag)
{
const_cast<CVertexBuffer &>(modelVb).setVertexColorFormat(vtc);
}
}
CVertexBufferRead vbaRead;
modelVb.lock (vbaRead);
do
{
toProcess = std::min(leftToDo, ConstraintMeshBufSize);
outVb.setNumVertices(toProcess * nbVerticesInSource);
{
CVertexBufferReadWrite vba;
outVb.lock(vba);
uint8 *outVertex = (uint8 *) vba.getVertexCoordPointer();
if (m._SizeScheme)
{
ptCurrSize = (float *) (m._SizeScheme->make(m._Owner, size -leftToDo, &sizes[0], sizeof(float), toProcess, true, srcStep));
}
else
{
ptCurrSize = &m._ParticleSize;
}
if (m._PlaneBasisScheme)
{
ptBasis = (CPlaneBasis *) (m._PlaneBasisScheme->make(m._Owner, size -leftToDo, &planeBasis[0], sizeof(CPlaneBasis), toProcess, true, srcStep));
}
else
{
ptBasis = &m._PlaneBasis;
}
endPosIt = posIt + toProcess;
// transfo matrix & scaled transfo matrix;
CMatrix M, sM;
if (m._Meshes.size() == 1)
{
/// unmorphed case
do
{
const uint8 *inVertex = (const uint8 *) vbaRead.getVertexCoordPointer();
uint k = nbVerticesInSource;
// do we need a normal ?
if (modelVb.getVertexFormat() & CVertexBuffer::NormalFlag)
{
M.identity();
M.setRot(ptBasis->X, ptBasis->Y, ptBasis->X ^ ptBasis->Y);
sM = M;
sM.scale(*ptCurrSize);
// offset of normals in the prerotated mesh
do
{
CHECK_VERTEX_BUFFER(modelVb, inVertex);
CHECK_VERTEX_BUFFER(outVb, outVertex);
CHECK_VERTEX_BUFFER(modelVb, inVertex + inNormalOff);
CHECK_VERTEX_BUFFER(outVb, outVertex + outNormalOff);
// translate and resize the vertex (relatively to the mesh origin)
*(CVector *) outVertex = *posIt + sM * *(CVector *) inVertex;
// copy the normal
*(CVector *) (outVertex + outNormalOff) = M * *(CVector *) (inVertex + inNormalOff);
inVertex += inVSize;
outVertex += outVSize;
}
while (--k);
}
else
{
// no normal to transform
sM.identity();
sM.setRot(ptBasis->X, ptBasis->Y, ptBasis->X ^ ptBasis->Y);
sM.scale(*ptCurrSize);
do
{
CHECK_VERTEX_BUFFER(modelVb, inVertex);
CHECK_VERTEX_BUFFER(outVb, outVertex);
// translate and resize the vertex (relatively to the mesh origin)
*(CVector *) outVertex = *posIt + sM * *(CVector *) inVertex;
inVertex += inVSize;
outVertex += outVSize;
}
while (--k);
}
++posIt;
ptCurrSize += ptCurrSizeIncrement;
ptBasis += ptBasisIncrement;
}
while (posIt != endPosIt);
}
else
{
// morphed case
// first, compute the morph value for each mesh
float morphValues[ConstraintMeshBufSize];
float *currMorphValue;
uint morphValueIncr;
if (m._MorphScheme) // variable case
{
currMorphValue = (float *) m._MorphScheme->make(m._Owner, size - leftToDo, &morphValues[0], sizeof(float), toProcess, true, srcStep);
morphValueIncr = 1;
}
else /// constant case
{
currMorphValue = &m._MorphValue;
morphValueIncr = 0;
}
do
{
const uint numShapes = (uint)m._Meshes.size();
const uint8 *m0, *m1;
float lambda;
float opLambda;
const CVertexBuffer *inVB0, *inVB1;
if (*currMorphValue >= numShapes - 1)
{
lambda = 0.f;
opLambda = 1.f;
inVB0 = inVB1 = &(m.getMeshVB(numShapes - 1));
}
else if (*currMorphValue <= 0)
{
lambda = 0.f;
opLambda = 1.f;
inVB0 = inVB1 = &(m.getMeshVB(0));
}
else
{
uint iMeshIndex = (uint) *currMorphValue;
lambda = *currMorphValue - iMeshIndex;
opLambda = 1.f - lambda;
inVB0 = &(m.getMeshVB(iMeshIndex));
inVB1 = &(m.getMeshVB(iMeshIndex + 1));
}
CVertexBufferRead vba0;
inVB0->lock (vba0);
CVertexBufferRead vba1;
inVB1->lock (vba1);
m0 = (uint8 *) vba0.getVertexCoordPointer();
m1 = (uint8 *) vba1.getVertexCoordPointer();
uint k = nbVerticesInSource;
// do we need a normal ?
if (modelVb.getVertexFormat() & CVertexBuffer::NormalFlag)
{
M.identity();
M.setRot(ptBasis->X, ptBasis->Y, ptBasis->X ^ ptBasis->Y);
sM = M;
sM.scale(*ptCurrSize);
// offset of normals in the prerotated mesh
do
{
CHECK_VERTEX_BUFFER((*inVB0), m0);
CHECK_VERTEX_BUFFER((*inVB1), m1);
CHECK_VERTEX_BUFFER((*inVB0), m0 + inNormalOff);
CHECK_VERTEX_BUFFER((*inVB1), m1 + inNormalOff);
CHECK_VERTEX_BUFFER(outVb, outVertex);
CHECK_VERTEX_BUFFER(outVb, outVertex + outNormalOff);
// morph, and transform the vertex
*(CVector *) outVertex = *posIt + sM * (opLambda * *(CVector *) m0 + lambda * *(CVector *) m1);
// morph, and transform the normal
*(CVector *) (outVertex + outNormalOff) = M * (opLambda * *(CVector *) (m0 + inNormalOff)
+ lambda * *(CVector *) (m1 + inNormalOff)).normed();
m0 += inVSize;
m1 += inVSize;
outVertex += outVSize;
}
while (--k);
}
else
{
// no normal to transform
sM.identity();
sM.setRot(ptBasis->X, ptBasis->Y, ptBasis->X ^ ptBasis->Y);
sM.scale(*ptCurrSize);
do
{
CHECK_VERTEX_BUFFER((*inVB0), m0);
CHECK_VERTEX_BUFFER((*inVB1), m1);
CHECK_VERTEX_BUFFER(outVb, outVertex);
// morph, and transform the vertex
*(CVector *) outVertex = *posIt + sM * (opLambda * *(CVector *) m0 + opLambda * *(CVector *) m1);
m0 += inVSize;
m1 += inVSize;
outVertex += outVSize;
}
while (--k);
}
++posIt;
ptCurrSize += ptCurrSizeIncrement;
ptBasis += ptBasisIncrement;
currMorphValue += morphValueIncr;
}
while (posIt != endPosIt);
}
// compute colors if needed
if (m._ColorScheme)
{
m.computeColors(outVb, modelVb, size - leftToDo, toProcess, srcStep, *driver, vba, vbaRead);
}
}
// render meshs
driver->activeVertexBuffer(outVb);
m.doRenderPasses(driver, toProcess, md.RdrPasses, opaque);
leftToDo -= toProcess;
}
while (leftToDo);
}
template <class T, class U>
static void drawPrerotatedMeshs(T posIt,
U indexIt,
CPSConstraintMesh &m,
uint size,
uint32 srcStep,
bool opaque)
{
// get the vb from the original mesh
const CVertexBuffer &modelVb = m.getMeshVB(0);
/// precompute rotation in a VB from the src mesh
CVertexBuffer &prerotVb = m.makePrerotatedVb(modelVb);
// driver setup
IDriver *driver = m.getDriver();
m.setupDriverModelMatrix();
// renderPasses setup
nlassert(m._Owner);
// storage for sizes of meshs
float sizes[ConstraintMeshBufSize];
// point the size for the current mesh
float *ptCurrSize;
uint ptCurrSizeIncrement = m._SizeScheme ? 1 : 0;
T endPosIt;
uint leftToDo = size, toProcess;
const uint nbVerticesInSource = modelVb.getNumVertices();
// size of a complete prerotated model
const uint prerotatedModelSize = prerotVb.getVertexSize() * modelVb.getNumVertices();
/// get a mesh display struct on this shape, with eventually a primary color added.
CPSConstraintMesh::CMeshDisplay &md = m._MeshDisplayShare.getMeshDisplay(m._Meshes[0], modelVb, modelVb.getVertexFormat()
| (m._ColorScheme ? CVertexBuffer::PrimaryColorFlag : 0));
m.setupRenderPasses((float) m._Owner->getOwner()->getSystemDate() - m._GlobalAnimDate, md.RdrPasses, opaque);
CVertexBuffer &outVb = md.VB;
// size of vertices in prerotated model
const uint inVSize = prerotVb.getVertexSize();
// size ofr vertices in dest vb
const uint outVSize = outVb.getVertexSize();
// offset of normals in vertices of the prerotated model, and source model
uint normalOff=0;
uint pNormalOff=0;
if (prerotVb.getVertexFormat() & CVertexBuffer::NormalFlag)
{
normalOff = outVb.getNormalOff();
pNormalOff = prerotVb.getNormalOff();
}
if (m._ColorScheme)
{
CVertexBuffer::TVertexColorType vtc = driver->getVertexColorFormat();
m._ColorScheme->setColorType(vtc);
if (modelVb.getVertexFormat() & CVertexBuffer::PrimaryColorFlag)
{
const_cast<CVertexBuffer &>(modelVb).setVertexColorFormat(vtc);
}
}
CVertexBufferRead PrerotVba;
prerotVb.lock(PrerotVba);
do
{
toProcess = std::min(leftToDo, ConstraintMeshBufSize);
outVb.setNumVertices(toProcess * nbVerticesInSource);
{
CVertexBufferReadWrite vba;
outVb.lock(vba);
if (m._SizeScheme)
{
// compute size
ptCurrSize = (float *) (m._SizeScheme->make(m._Owner, size - leftToDo, &sizes[0], sizeof(float), toProcess, true, srcStep));
}
else
{
// pointer on constant size
ptCurrSize = &m._ParticleSize;
}
endPosIt = posIt + toProcess;
uint8 *outVertex = (uint8 *) vba.getVertexCoordPointer();
/// copy datas for several mesh
do
{
uint8 *inVertex = (uint8 *) PrerotVba.getVertexCoordPointer() + prerotatedModelSize * *indexIt; // prerotated vertex
uint k = nbVerticesInSource;
if (prerotVb.getVertexFormat() & CVertexBuffer::NormalFlag) // has it a normal ?
{
do
{
CHECK_VERTEX_BUFFER(outVb, outVertex);
CHECK_VERTEX_BUFFER(prerotVb, inVertex);
CHECK_VERTEX_BUFFER(outVb, outVertex + normalOff);
CHECK_VERTEX_BUFFER(prerotVb, inVertex + pNormalOff);
// translate and resize the vertex (relatively to the mesh origin)
*(CVector *) outVertex = *posIt + *ptCurrSize * *(CVector *) inVertex;
// copy the normal
*(CVector *) (outVertex + normalOff ) = *(CVector *) (inVertex + pNormalOff);
inVertex += inVSize;
outVertex += outVSize;
}
while (--k);
}
else
{
do
{
// translate and resize the vertex (relatively to the mesh origin)
CHECK_VERTEX_BUFFER(outVb, outVertex);
CHECK_VERTEX_BUFFER(prerotVb, inVertex);
*(CVector *) outVertex = *posIt + *ptCurrSize * *(CVector *) inVertex;
inVertex += inVSize;
outVertex += outVSize;
}
while (--k);
}
++indexIt;
++posIt;
ptCurrSize += ptCurrSizeIncrement;
}
while (posIt != endPosIt);
// compute colors if needed
if (m._ColorScheme)
{
m.computeColors(outVb, modelVb, size - leftToDo, toProcess, srcStep, *driver, vba, PrerotVba);
}
}
/// render the result
driver->activeVertexBuffer(outVb);
m.doRenderPasses(driver, toProcess, md.RdrPasses, opaque);
leftToDo -= toProcess;
}
while (leftToDo);
PARTICLES_CHECK_MEM
}
};
CPSConstraintMesh::CPSConstraintMesh() : _NumFaces(0),
_ModelBank(NULL),
_ModulatedStages(0),
_Touched(1),
_HasOpaqueFaces(0),
_VertexColorLightingForced(false),
_GlobalAnimationEnabled(0),
_ReinitGlobalAnimTimeOnNewElement(0),
_HasLightableFaces(0),
_ValidBuild(0),
_MorphValue(0),
_MorphScheme(NULL)
{
NL_PS_FUNC(CPSConstraintMesh_CPSConstraintMesh)
if (CParticleSystem::getSerializeIdentifierFlag()) _Name = std::string("ConstraintMesh");
}
//====================================================================================
uint32 CPSConstraintMesh::getNumWantedTris() const
{
NL_PS_FUNC(CPSConstraintMesh_getNumWantedTris)
// nlassert(_ModelVb);
//return _NumFaces * _Owner->getMaxSize();
return _NumFaces * _Owner->getSize();
}
//====================================================================================
bool CPSConstraintMesh::hasTransparentFaces(void)
{
NL_PS_FUNC(CPSConstraintMesh_hasTransparentFaces)
if (!_Touched) return _HasTransparentFaces != 0;
/// we must update the mesh to know whether it has transparent faces
update();
return _HasTransparentFaces != 0;
}
//====================================================================================
bool CPSConstraintMesh::hasOpaqueFaces(void)
{
NL_PS_FUNC(CPSConstraintMesh_hasOpaqueFaces)
if (!_Touched) return _HasOpaqueFaces != 0;
update();
return _HasOpaqueFaces != 0;
}
//====================================================================================
bool CPSConstraintMesh::hasLightableFaces()
{
NL_PS_FUNC(CPSConstraintMesh_hasLightableFaces)
if (!_Touched) return _HasLightableFaces != 0;
update();
return _HasLightableFaces != 0;
}
//====================================================================================
void CPSConstraintMesh::setShape(const std::string &meshFileName)
{
NL_PS_FUNC(CPSConstraintMesh_setShape)
_MeshShapeFileName.resize(1);
_MeshShapeFileName[0] = meshFileName;
_Touched = 1;
_ValidBuild = 0;
}
//===========================================================================
std::string CPSConstraintMesh::getShape(void) const
{
NL_PS_FUNC(CPSConstraintMesh_getShape)
if (_Touched)
{
const_cast<CPSConstraintMesh *>(this)->update();
}
nlassert(_MeshShapeFileName.size() == 1);
return _MeshShapeFileName[0];
}
//====================================================================================
bool CPSConstraintMesh::isValidBuild() const
{
NL_PS_FUNC(CPSConstraintMesh_isValidBuild)
if (_Touched)
{
const_cast<CPSConstraintMesh *>(this)->update();
}
return _ValidBuild != 0;
}
//====================================================================================
void CPSConstraintMesh::setShapes(const std::string *shapesNames, uint numShapes)
{
NL_PS_FUNC(CPSConstraintMesh_setShapes)
_MeshShapeFileName.resize(numShapes);
std::copy(shapesNames, shapesNames + numShapes, _MeshShapeFileName.begin());
_Touched = 1;
_ValidBuild = 0;
}
//====================================================================================
uint CPSConstraintMesh::getNumShapes() const
{
NL_PS_FUNC(CPSConstraintMesh_getNumShapes)
if (_Touched)
{
const_cast<CPSConstraintMesh *>(this)->update();
}
return (uint)_MeshShapeFileName.size();
}
//====================================================================================
void CPSConstraintMesh::getShapesNames(std::string *shapesNames) const
{
NL_PS_FUNC(CPSConstraintMesh_getShapesNames)
if (_Touched)
{
const_cast<CPSConstraintMesh *>(this)->update();
}
std::copy(_MeshShapeFileName.begin(), _MeshShapeFileName.end(), shapesNames);
}
//====================================================================================
void CPSConstraintMesh::setShape(uint index, const std::string &shapeName)
{
NL_PS_FUNC(CPSConstraintMesh_setShape)
nlassert(index < _MeshShapeFileName.size());
_MeshShapeFileName[index] = shapeName;
_Touched = 1;
_ValidBuild = 0;
}
//====================================================================================
const std::string &CPSConstraintMesh::getShape(uint index) const
{
NL_PS_FUNC(CPSConstraintMesh_getShape)
if (_Touched)
{
const_cast<CPSConstraintMesh *>(this)->update();
}
nlassert(index < _MeshShapeFileName.size());
return _MeshShapeFileName[index];
}
//====================================================================================
void CPSConstraintMesh::setMorphValue(float value)
{
NL_PS_FUNC(CPSConstraintMesh_setMorphValue)
delete _MorphScheme;
_MorphScheme = NULL;
_MorphValue = value;
}
//====================================================================================
float CPSConstraintMesh::getMorphValue() const
{
NL_PS_FUNC(CPSConstraintMesh_getMorphValue)
return _MorphValue;
}
//====================================================================================
void CPSConstraintMesh::setMorphScheme(CPSAttribMaker<float> *scheme)
{
NL_PS_FUNC(CPSConstraintMesh_setMorphScheme)
delete _MorphScheme;
_MorphScheme = scheme;
if (_MorphScheme->hasMemory()) _MorphScheme->resize(_Owner->getMaxSize(), _Owner->getSize());
}
//====================================================================================
CPSAttribMaker<float> *CPSConstraintMesh::getMorphScheme()
{
NL_PS_FUNC(CPSConstraintMesh_getMorphScheme)
return _MorphScheme;
}
//====================================================================================
const CPSAttribMaker<float> *CPSConstraintMesh::getMorphScheme() const
{
NL_PS_FUNC(CPSConstraintMesh_getMorphScheme)
return _MorphScheme;
}
//====================================================================================
static CMesh *GetDummyMeshFromBank(CShapeBank &sb)
{
NL_PS_FUNC(GetDummyMeshFromBank)
static const std::string dummyMeshName("dummy constraint mesh shape");
if (sb.getPresentState(dummyMeshName) == CShapeBank::Present)
{
return NLMISC::safe_cast<CMesh *>(sb.addRef(dummyMeshName));
}
else
{
// no dummy shape created -> add one to the bank
CMesh *m = CreateDummyMesh();
sb.add(std::string("dummy constraint mesh shape"), m);
return m;
}
}
//====================================================================================
void CPSConstraintMesh::getShapeNumVerts(std::vector<sint> &numVerts)
{
NL_PS_FUNC(CPSConstraintMesh_getShapeNumVerts)
_Touched = 1; // force reload
update(&numVerts);
}
//====================================================================================
bool CPSConstraintMesh::update(std::vector<sint> *numVertsVect /*= NULL*/)
{
NL_PS_FUNC(CPSConstraintMesh_update)
bool ok = true;
if (!_Touched) return ok;
clean();
nlassert(_Owner->getScene());
CScene *scene = _Owner->getScene();
_ModelBank = scene->getShapeBank();
IShape *is = 0;
uint32 vFormat = 0;
uint numVerts = 0;
uint8 uvRouting[CVertexBuffer::MaxStage];
if (_MeshShapeFileName.size() == 0)
{
_MeshShapeFileName.resize(1);
_MeshShapeFileName[0] = DummyShapeName;
}
_Meshes.resize(_MeshShapeFileName.size());
_MeshVertexBuffers.resize(_MeshShapeFileName.size());
std::fill(_MeshVertexBuffers.begin(), _MeshVertexBuffers.end(), (CVertexBuffer *) NULL);
if (numVertsVect) numVertsVect->resize(_MeshShapeFileName.size());
for (uint k = 0; k < _MeshShapeFileName.size(); ++k)
{
if (_ModelBank->getPresentState(_MeshShapeFileName[k]) == CShapeBank::Present)
{
CMesh *mesh = dynamic_cast<CMesh *>( _ModelBank->addRef(_MeshShapeFileName[k]));
if (!mesh)
{
nlwarning("Tried to bind a shape that is not a mesh to a mesh particle : %s", _MeshShapeFileName[k].c_str());
_ModelBank->release(is);
ok = false;
if (numVertsVect) (*numVertsVect)[k] = ShapeFileIsNotAMesh;
}
else
{
_Meshes[k] = mesh;
/// get the mesh format, or check that is was the same that previous shapes ' one
if (k == 0)
{
vFormat = mesh->getVertexBuffer().getVertexFormat();
numVerts = mesh->getVertexBuffer().getNumVertices();
std::copy(mesh->getVertexBuffer().getUVRouting(), mesh->getVertexBuffer().getUVRouting() + CVertexBuffer::MaxStage, uvRouting);
if (numVertsVect) (*numVertsVect)[k] = (sint) numVerts;
}
else
{
if (vFormat != mesh->getVertexBuffer().getVertexFormat())
{
nlwarning("Vertex format differs between meshs");
ok = false;
}
if (numVerts != mesh->getVertexBuffer().getNumVertices())
{
nlwarning("Num vertices differs between meshs");
ok = false;
}
if (!std::equal(mesh->getVertexBuffer().getUVRouting(), mesh->getVertexBuffer().getUVRouting() + CVertexBuffer::MaxStage, uvRouting))
{
nlwarning("UV routing differs between meshs");
ok = false;
}
if (numVertsVect) (*numVertsVect)[k] = (sint) mesh->getVertexBuffer().getNumVertices();
}
}
}
else
{
try
{
_ModelBank->load(_MeshShapeFileName[k]);
}
catch (const NLMISC::EPathNotFound &)
{
nlwarning("mesh not found : %s; used as a constraint mesh particle", _MeshShapeFileName[k].c_str());
// shape not found, so not present in the shape bank -> we create a dummy shape
}
if (_ModelBank->getPresentState(_MeshShapeFileName[k]) != CShapeBank::Present)
{
ok = false;
if (numVertsVect) (*numVertsVect)[k] = ShapeFileNotLoaded;
}
else
{
is = _ModelBank->addRef(_MeshShapeFileName[k]);
if (!dynamic_cast<CMesh *>(is)) // is it a mesh
{
nlwarning("Tried to bind a shape that is not a mesh to a mesh particle : %s", _MeshShapeFileName[k].c_str());
_ModelBank->release(is);
ok = false;
if (numVertsVect) (*numVertsVect)[k] = ShapeFileIsNotAMesh;
}
else
{
CMesh &m = * NLMISC::safe_cast<CMesh *>(is);
/// make sure there are not too many vertices
if (m.getVertexBuffer().getNumVertices() > ConstraintMeshMaxNumVerts)
{
nlwarning("Tried to bind a mesh that has more than %d vertices to a particle mesh: %s", (int) ConstraintMeshMaxNumVerts, _MeshShapeFileName[k].c_str());
_ModelBank->release(is);
ok = false;
if (numVertsVect) (*numVertsVect)[k] = ShapeHasTooMuchVertices;
}
else
{
_Meshes[k] = &m;
if (k == 0)
{
vFormat = m.getVertexBuffer().getVertexFormat();
numVerts = m.getVertexBuffer().getNumVertices();
std::copy(m.getVertexBuffer().getUVRouting(), m.getVertexBuffer().getUVRouting() + CVertexBuffer::MaxStage, uvRouting);
if (numVertsVect) (*numVertsVect)[k] = numVerts;
}
else
{
uint32 otherVFormat = m.getVertexBuffer().getVertexFormat();
uint otherNumVerts = m.getVertexBuffer().getNumVertices();
if (otherVFormat != vFormat ||
otherNumVerts != numVerts ||
!(std::equal(m.getVertexBuffer().getUVRouting(), m.getVertexBuffer().getUVRouting() + CVertexBuffer::MaxStage, uvRouting)))
{
ok = false;
}
if (numVertsVect) (*numVertsVect)[k] = otherNumVerts;
}
}
}
}
}
if (!ok && !numVertsVect) break;
}
if (!ok)
{
releaseShapes();
_Meshes.resize(1);
_MeshVertexBuffers.resize(1);
_Meshes[0] = GetDummyMeshFromBank(*_ModelBank);
_MeshVertexBuffers[0] = &_Meshes[0]->getVertexBuffer();
}
const CMesh &m = *_Meshes[0];
/// update the number of faces
_NumFaces = getMeshNumTri(m);
/*
notifyOwnerMaxNumFacesChanged();
if (_Owner && _Owner->getOwner())
{
_Owner->getOwner()->notifyMaxNumFacesChanged();
}*/
/// update opacity / transparency state
bool hasTransparentFaces, hasOpaqueFaces;
CheckForOpaqueAndTransparentFacesInMesh(m, hasTransparentFaces, hasOpaqueFaces);
_HasTransparentFaces = hasTransparentFaces;
_HasOpaqueFaces = hasOpaqueFaces;
_HasLightableFaces = CheckForLightableFacesInMesh(m);
_GlobalAnimDate = _Owner->getOwner()->getSystemDate();
_Touched = 0;
_ValidBuild = ok ? 1 : 0;
nlassert(_Meshes.size() > 0);
return ok;
}
//====================================================================================
void CPSConstraintMesh::hintRotateTheSame(uint32 nbConfiguration,
float minAngularVelocity,
float maxAngularVelocity
)
{
NL_PS_FUNC(CPSConstraintMesh_hintRotateTheSame)
nlassert(nbConfiguration <= ConstraintMeshMaxNumPrerotatedModels);
// TODO : avoid code duplication with CPSFace ...
_MinAngularVelocity = minAngularVelocity;
_MaxAngularVelocity = maxAngularVelocity;
_PrecompBasis.resize(nbConfiguration);
if (nbConfiguration)
{
// each precomp basis is created randomly;
for (uint k = 0; k < nbConfiguration; ++k)
{
CVector v = MakeRandomUnitVect();
_PrecompBasis[k].Basis = CPlaneBasis(v);
_PrecompBasis[k].Axis = MakeRandomUnitVect();
_PrecompBasis[k].AngularVelocity = minAngularVelocity
+ (rand() % 20000) / 20000.f * (maxAngularVelocity - minAngularVelocity);
}
// we need to do this because nbConfs may have changed
fillIndexesInPrecompBasis();
}
}
//====================================================================================
void CPSConstraintMesh::fillIndexesInPrecompBasis(void)
{
NL_PS_FUNC(CPSConstraintMesh_fillIndexesInPrecompBasis)
// TODO : avoid code duplication with CPSFace ...
const uint32 nbConf = (uint32)_PrecompBasis.size();
if (_Owner)
{
_IndexInPrecompBasis.resize( _Owner->getMaxSize() );
}
for (CPSVector<uint32>::V::iterator it = _IndexInPrecompBasis.begin(); it != _IndexInPrecompBasis.end(); ++it)
{
*it = rand() % nbConf;
}
}
//====================================================================================
/// serialisation. Derivers must override this, and call their parent version
void CPSConstraintMesh::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CPSConstraintMesh_IStream )
sint ver = f.serialVersion(4);
if (f.isReading())
{
clean();
}
CPSParticle::serial(f);
CPSSizedParticle::serialSizeScheme(f);
CPSRotated3DPlaneParticle::serialPlaneBasisScheme(f);
// prerotations ...
if (f.isReading())
{
uint32 nbConfigurations;
f.serial(nbConfigurations);
if (nbConfigurations)
{
f.serial(_MinAngularVelocity, _MaxAngularVelocity);
}
hintRotateTheSame(nbConfigurations, _MinAngularVelocity, _MaxAngularVelocity);
}
else
{
uint32 nbConfigurations = (uint32)_PrecompBasis.size();
f.serial(nbConfigurations);
if (nbConfigurations)
{
f.serial(_MinAngularVelocity, _MaxAngularVelocity);
}
}
// saves the model file name, or an empty string if nothing has been set
static std::string emptyStr;
if (ver < 4) // early version : no morphing support
{
if (!f.isReading())
{
if (_MeshShapeFileName.size() > 0)
{
f.serial(_MeshShapeFileName[0]);
}
else
{
f.serial(emptyStr);
}
}
else
{
_MeshShapeFileName.resize(1);
f.serial(_MeshShapeFileName[0]);
_Touched = true;
_ValidBuild = 0;
}
}
if (ver > 1)
{
CPSColoredParticle::serialColorScheme(f);
f.serial(_ModulatedStages);
if (f.isReading())
{
bool vcEnabled;
f.serial(vcEnabled);
_VertexColorLightingForced = vcEnabled;
}
else
{
bool vcEnabled = (_VertexColorLightingForced != 0);
f.serial(vcEnabled);
}
}
if (ver > 2) // texture animation
{
if (f.isReading())
{
bool gaEnabled;
f.serial(gaEnabled);
_GlobalAnimationEnabled = gaEnabled;
if (gaEnabled)
{
PGlobalTexAnims newPtr(new CGlobalTexAnims); // create new
//std::swap(_GlobalTexAnims, newPtr); // replace old
_GlobalTexAnims = newPtr;
f.serial(*_GlobalTexAnims);
}
bool rgt;
f.serial(rgt);
_ReinitGlobalAnimTimeOnNewElement = rgt;
}
else
{
bool gaEnabled = (_GlobalAnimationEnabled != 0);
f.serial(gaEnabled);
if (gaEnabled)
{
f.serial(*_GlobalTexAnims);
}
bool rgt = _ReinitGlobalAnimTimeOnNewElement != 0;
f.serial(rgt);
}
}
if (ver > 3) // mesh morphing
{
if (!f.isReading())
{
// remove path
TMeshNameVect meshNamesWithoutPath = _MeshShapeFileName;
std::transform(meshNamesWithoutPath.begin(), meshNamesWithoutPath.end(), meshNamesWithoutPath.begin(), std::ptr_fun(NLMISC::CFile::getFilename));
f.serialCont(meshNamesWithoutPath);
}
else
{
f.serialCont(_MeshShapeFileName);
}
bool useScheme;
if (f.isReading())
{
delete _MorphScheme;
}
else
{
useScheme = _MorphScheme != NULL;
}
f.serial(useScheme);
if (useScheme)
{
f.serialPolyPtr(_MorphScheme);
}
else
{
f.serial(_MorphValue);
}
}
}
//====================================================================================
CPSConstraintMesh::~CPSConstraintMesh()
{
NL_PS_FUNC(CPSConstraintMesh_CPSConstraintMeshDtor)
clean();
delete _MorphScheme;
}
//====================================================================================
void CPSConstraintMesh::releaseShapes()
{
NL_PS_FUNC(CPSConstraintMesh_releaseShapes)
for (TMeshVect::iterator it = _Meshes.begin(); it != _Meshes.end(); ++it)
{
if (*it)
{
if (_ModelBank) _ModelBank->release(*it);
}
}
_Meshes.clear();
_MeshVertexBuffers.clear();
}
//====================================================================================
void CPSConstraintMesh::clean(void)
{
NL_PS_FUNC(CPSConstraintMesh_clean)
if (_ModelBank)
{
releaseShapes();
}
}
//====================================================================================
CVertexBuffer &CPSConstraintMesh::makePrerotatedVb(const CVertexBuffer &inVb)
{
NL_PS_FUNC(CPSConstraintMesh_makePrerotatedVb)
// get a VB that has positions and eventually normals
CVertexBuffer &prerotatedVb = inVb.getVertexFormat() & CVertexBuffer::NormalFlag ? _PreRotatedMeshVBWithNormal : _PreRotatedMeshVB;
CVertexBufferReadWrite vba;
prerotatedVb.lock (vba);
CVertexBufferRead vbaIn;
inVb.lock (vbaIn);
// size of vertices for source VB
const uint vSize = inVb.getVertexSize();
// size for vertices in prerotated model
const uint vpSize = prerotatedVb.getVertexSize();
// offset of normals in vertices of the prerotated model, and source model
uint normalOff=0;
uint pNormalOff=0;
if (prerotatedVb.getVertexFormat() & CVertexBuffer::NormalFlag)
{
normalOff = inVb.getNormalOff();
pNormalOff = prerotatedVb.getNormalOff();
}
const uint nbVerticesInSource = inVb.getNumVertices();
// rotate basis
// and compute the set of prerotated meshs that will then duplicated (with scale and translation) to create the Vb of what must be drawn
uint8 *outVertex = (uint8 *) vba.getVertexCoordPointer();
for (CPSVector<CPlaneBasisPair>::V::iterator it = _PrecompBasis.begin(); it != _PrecompBasis.end(); ++it)
{
// not optimized at all, but this will apply to very few elements anyway...
CMatrix mat;
mat.rotate(CQuat(it->Axis, CParticleSystem::EllapsedTime * it->AngularVelocity));
CVector n = mat * it->Basis.getNormal();
it->Basis = CPlaneBasis(n);
mat.identity();
mat.setRot(it->Basis.X, it->Basis.Y, it->Basis.X ^ it->Basis.Y);
uint8 *inVertex = (uint8 *) vbaIn.getVertexCoordPointer();
uint k = nbVerticesInSource;
// check whether we need to rotate normals as well...
if (inVb.getVertexFormat() & CVertexBuffer::NormalFlag)
{
do
{
CHECK_VERTEX_BUFFER(inVb, inVertex);
CHECK_VERTEX_BUFFER(inVb, inVertex + normalOff);
CHECK_VERTEX_BUFFER(prerotatedVb, outVertex);
CHECK_VERTEX_BUFFER(prerotatedVb, outVertex + pNormalOff);
* (CVector *) outVertex = mat.mulVector(* (CVector *) inVertex);
* (CVector *) (outVertex + normalOff) = mat.mulVector(* (CVector *) (inVertex + pNormalOff) );
outVertex += vpSize;
inVertex += vSize;
}
while (--k);
}
else
{
// no normal included
do
{
CHECK_VERTEX_BUFFER(prerotatedVb, outVertex);
CHECK_VERTEX_BUFFER(inVb, inVertex);
* (CVector *) outVertex = mat.mulVector(* (CVector *) inVertex);
outVertex += vpSize;
inVertex += vSize;
}
while (--k);
}
}
return prerotatedVb;
}
//====================================================================================
void CPSConstraintMesh::step(TPSProcessPass pass)
{
NL_PS_FUNC(CPSConstraintMesh_step)
if (
(pass == PSBlendRender && hasTransparentFaces())
|| (pass == PSSolidRender && hasOpaqueFaces())
)
{
draw(pass == PSSolidRender);
}
else
if (pass == PSToolRender) // edition mode only
{
showTool();
}
}
//====================================================================================
void CPSConstraintMesh::draw(bool opaque)
{
// if (!FilterPS[4]) return;
NL_PS_FUNC(CPSConstraintMesh_draw)
PARTICLES_CHECK_MEM;
nlassert(_Owner);
update(); // update mesh datas if needed
uint32 step;
uint numToProcess;
computeSrcStep(step, numToProcess);
if (!numToProcess) return;
_Owner->incrementNbDrawnParticles(numToProcess); // for benchmark purpose
if (_PrecompBasis.size() == 0) /// do we deal with prerotated meshs ?
{
if (step == (1 << 16))
{
CPSConstraintMeshHelper::drawMeshs(_Owner->getPos().begin(),
*this,
numToProcess,
step,
opaque
);
}
else
{
CPSConstraintMeshHelper::drawMeshs(TIteratorVectStep1616(_Owner->getPos().begin(), 0, step),
*this,
numToProcess,
step,
opaque
);
}
}
else
{
if (step == (1 << 16))
{
CPSConstraintMeshHelper::drawPrerotatedMeshs(_Owner->getPos().begin(),
_IndexInPrecompBasis.begin(),
*this,
numToProcess,
step,
opaque
);
}
else
{
typedef CAdvance1616Iterator<CPSVector<uint32>::V::const_iterator, uint32> TIndexIterator;
CPSConstraintMeshHelper::drawPrerotatedMeshs(TIteratorVectStep1616(_Owner->getPos().begin(), 0, step),
TIndexIterator(_IndexInPrecompBasis.begin(), 0, step),
*this,
numToProcess,
step,
opaque
);
}
}
}
//====================================================================================
void CPSConstraintMesh::setupMaterialColor(CMaterial &destMat, CMaterial &srcMat)
{
NL_PS_FUNC(CPSConstraintMesh_setupMaterialColor)
if (destMat.getShader() != CMaterial::Normal) return;
for (uint k = 0; k < IDRV_MAT_MAXTEXTURES; ++k)
{
if (_ModulatedStages & (1 << k))
{
destMat.texEnvArg0RGB(k, CMaterial::Texture, CMaterial::SrcColor);
destMat.texEnvArg0Alpha(k, CMaterial::Texture, CMaterial::SrcAlpha);
destMat.texEnvArg1RGB(k, CMaterial::Diffuse, CMaterial::SrcColor);
destMat.texEnvArg1Alpha(k, CMaterial::Diffuse, CMaterial::SrcAlpha);
destMat.texEnvOpRGB(k, CMaterial::Modulate);
destMat.texEnvOpAlpha(k, CMaterial::Modulate);
}
else // restore from source material
{
destMat.setTexEnvMode(k, srcMat.getTexEnvMode(k));
}
}
if (_ColorScheme == NULL) // per mesh color ?
{
destMat.setColor(_Color);
if (destMat.isLighted())
{
destMat.setDiffuse(_Color);
}
}
}
//====================================================================================
void CPSConstraintMesh::setupRenderPasses(float date, TRdrPassSet &rdrPasses, bool opaque)
{
NL_PS_FUNC(CPSConstraintMesh_setupRenderPasses)
// render meshs : we process each rendering pass
for (TRdrPassSet::iterator rdrPassIt = rdrPasses.begin();
rdrPassIt != rdrPasses.end(); ++rdrPassIt)
{
CMaterial &Mat = rdrPassIt->Mat;
CMaterial &SourceMat = rdrPassIt->SourceMat;
/// check whether this material has to be rendered
if ((opaque && Mat.getZWrite()) || (!opaque && ! Mat.getZWrite()))
{
// has to setup material constant color ?
// global color not supported for mesh
/* CParticleSystem &ps = *(_Owner->getOwner());
if (!_ColorScheme)
{
NLMISC::CRGBA col;
col.modulateFromColor(SourceMat.getColor(), _Color);
if (ps.getColorAttenuationScheme() == NULL || ps.isUserColorUsed())
{
col.modulateFromColor(col, ps.getGlobalColor());
}
Mat.setColor(col);
}
else
{
Mat.setColor(ps.getGlobalColor());
}*/
/** Force modulation for some stages & setup global color
*/
setupMaterialColor(Mat, SourceMat);
/// force vertex lighting
bool forceVertexcolorLighting;
if (_ColorScheme != NULL)
{
forceVertexcolorLighting = _VertexColorLightingForced != 0 ? true : SourceMat.getLightedVertexColor();
}
else
{
forceVertexcolorLighting = false;
}
if (forceVertexcolorLighting != Mat.getLightedVertexColor()) // avoid to touch mat if not needed
{
Mat.setLightedVertexColor(forceVertexcolorLighting);
}
///global texture animation
if (_GlobalAnimationEnabled != 0)
{
for (uint k = 0; k < IDRV_MAT_MAXTEXTURES; ++k)
{
if (Mat.getTexture(k) != NULL)
{
Mat.enableUserTexMat(k, true);
CMatrix mat;
_GlobalTexAnims->Anims[k].buildMatrix(date, mat);
Mat.setUserTexMat(k ,mat);
}
}
}
}
}
}
//====================================================================================
void CPSConstraintMesh::doRenderPasses(IDriver *driver, uint numObj, TRdrPassSet &rdrPasses, bool opaque)
{
NL_PS_FUNC(CPSConstraintMesh_doRenderPasses)
// render meshs : we process each rendering pass
for (TRdrPassSet::iterator rdrPassIt = rdrPasses.begin(); rdrPassIt != rdrPasses.end(); ++rdrPassIt)
{
CMaterial &Mat = rdrPassIt->Mat;
if ((opaque && Mat.getZWrite()) || (!opaque && ! Mat.getZWrite()))
{
/// setup number of primitives to be rendered
rdrPassIt->PbTri.setNumIndexes(((rdrPassIt->PbTri.capacity()/3) * numObj / ConstraintMeshBufSize) * 3);
rdrPassIt->PbLine.setNumIndexes(((rdrPassIt->PbLine.capacity()/2) * numObj / ConstraintMeshBufSize) * 2);
/// render the primitives
driver->activeIndexBuffer (rdrPassIt->PbTri);
driver->renderTriangles(rdrPassIt->Mat, 0, rdrPassIt->PbTri.getNumIndexes()/3);
if (rdrPassIt->PbLine.getNumIndexes() != 0)
{
driver->activeIndexBuffer (rdrPassIt->PbLine);
driver->renderLines(rdrPassIt->Mat, 0, rdrPassIt->PbLine.getNumIndexes()/2);
}
}
}
}
//====================================================================================
void CPSConstraintMesh::computeColors(CVertexBuffer &outVB, const CVertexBuffer &inVB, uint startIndex, uint toProcess, uint32 srcStep, IDriver &drv,
CVertexBufferReadWrite &vba,
CVertexBufferRead &vbaIn
)
{
NL_PS_FUNC(CPSConstraintMesh_computeColors)
nlassert(_ColorScheme);
// there are 2 case : 1 - the source mesh has colors, which are modulated with the current color
// 2 - the source mesh has no colors : colors are directly copied into the dest vb
if (inVB.getVertexFormat() & CVertexBuffer::PrimaryColorFlag) // case 1
{
// TODO: optimisation : avoid to duplicate colors...
_ColorScheme->makeN(_Owner, startIndex, vba.getColorPointer(), outVB.getVertexSize(), toProcess, inVB.getNumVertices(), srcStep);
// modulate from the source mesh
// todo hulud d3d vertex color RGBA / BGRA
uint8 *vDest = (uint8 *) vba.getColorPointer();
uint8 *vSrc = (uint8 *) vbaIn.getColorPointer();
const uint vSize = outVB.getVertexSize();
const uint numVerts = inVB.getNumVertices();
uint meshSize = vSize * numVerts;
for (uint k = 0; k < toProcess; ++k)
{
NLMISC::CRGBA::modulateColors((CRGBA *) vDest, (CRGBA *) vSrc, (CRGBA *) vDest, numVerts, vSize, vSize);
vDest += meshSize;
}
}
else // case 2
{
_ColorScheme->makeN(_Owner, startIndex, vba.getColorPointer(), outVB.getVertexSize(), toProcess, inVB.getNumVertices(), srcStep);
}
}
//====================================================================================
void CPSConstraintMesh::newElement(const CPSEmitterInfo &info)
{
NL_PS_FUNC(CPSConstraintMesh_newElement)
newSizeElement(info);
newPlaneBasisElement(info);
// TODO : avoid code duplication with CPSFace ...
const uint32 nbConf = (uint32)_PrecompBasis.size();
if (nbConf) // do we use precomputed basis ?
{
_IndexInPrecompBasis[_Owner->getNewElementIndex()] = rand() % nbConf;
}
newColorElement(info);
if (_GlobalAnimationEnabled && _ReinitGlobalAnimTimeOnNewElement)
{
_GlobalAnimDate = _Owner->getOwner()->getSystemDate();
}
if (_MorphScheme && _MorphScheme->hasMemory()) _MorphScheme->newElement(info);
}
//====================================================================================
void CPSConstraintMesh::deleteElement(uint32 index)
{
NL_PS_FUNC(CPSConstraintMesh_deleteElement)
deleteSizeElement(index);
deletePlaneBasisElement(index);
// TODO : avoid code cuplication with CPSFace ...
if (!_PrecompBasis.empty()) // do we use precomputed basis ?
{
// replace ourself by the last element...
_IndexInPrecompBasis[index] = _IndexInPrecompBasis[_Owner->getSize() - 1];
}
deleteColorElement(index);
if (_MorphScheme && _MorphScheme->hasMemory()) _MorphScheme->deleteElement(index);
}
//====================================================================================
void CPSConstraintMesh::resize(uint32 size)
{
NL_PS_FUNC(CPSConstraintMesh_resize)
nlassert(size < (1 << 16));
resizeSize(size);
resizePlaneBasis(size);
// TODO : avoid code cuplication with CPSFace ...
if (!_PrecompBasis.empty()) // do we use precomputed basis ?
{
_IndexInPrecompBasis.resize(size);
}
resizeColor(size);
if (_MorphScheme && _MorphScheme->hasMemory()) _MorphScheme->resize(size, _Owner->getSize());
}
//====================================================================================
void CPSConstraintMesh::updateMatAndVbForColor(void)
{
NL_PS_FUNC(CPSConstraintMesh_updateMatAndVbForColor)
// nothing to do for us...
}
//====================================================================================
void CPSConstraintMesh::forceStageModulationByColor(uint stage, bool force)
{
NL_PS_FUNC(CPSConstraintMesh_forceStageModulationByColor)
nlassert(stage < IDRV_MAT_MAXTEXTURES);
if (force)
{
_ModulatedStages |= 1 << stage;
}
else
{
_ModulatedStages &= ~(1 << stage);
}
}
//====================================================================================
bool CPSConstraintMesh::isStageModulationForced(uint stage) const
{
NL_PS_FUNC(CPSConstraintMesh_isStageModulationForced)
nlassert(stage < IDRV_MAT_MAXTEXTURES);
return (_ModulatedStages & (1 << stage)) != 0;
}
//====================================================================================
/** This duplicate a primitive block n time in the destination primitive block
* This is used to draw several mesh at once
* For each duplication, vertices indices are shifted from the given offset (number of vertices in the mesh)
*/
static void DuplicatePrimitiveBlock(const CIndexBuffer &srcBlock, CIndexBuffer &destBlock, uint nbReplicate, uint vertOffset)
{
NL_PS_FUNC(DuplicatePrimitiveBlock)
PARTICLES_CHECK_MEM;
// this must be update each time a new primitive is added
// loop counters, and index of the current primitive in the dest pb
uint k, l, index;
// the current vertex offset.
uint currVertOffset;
// duplicate triangles
uint numTri = srcBlock.getNumIndexes()/3;
destBlock.setFormat(NL_DEFAULT_INDEX_BUFFER_FORMAT);
destBlock.setNumIndexes(3 * numTri * nbReplicate);
index = 0;
currVertOffset = 0;
CIndexBufferRead ibaRead;
srcBlock.lock (ibaRead);
CIndexBufferReadWrite ibaWrite;
destBlock.lock (ibaWrite);
#ifdef NL_FORCE_INDEX_BUFFER_16
nlassert(destBlock.getFormat() == CIndexBuffer::Indices16);
#endif
// TMP TMP TMP
if (ibaRead.getFormat() == CIndexBuffer::Indices16)
{
const TIndexType *triPtr = (TIndexType *) ibaRead.getPtr();
const TIndexType *currTriPtr; // current Tri
for (k = 0; k < nbReplicate; ++k)
{
currTriPtr = triPtr;
for (l = 0; l < numTri; ++l)
{
ibaWrite.setTri(3*index, currTriPtr[0] + currVertOffset, currTriPtr[1] + currVertOffset, currTriPtr[2] + currVertOffset);
currTriPtr += 3;
++ index;
}
currVertOffset += vertOffset;
}
}
else
{
const uint32 *triPtr = (uint32 *) ibaRead.getPtr();
const uint32 *currTriPtr; // current Tri
for (k = 0; k < nbReplicate; ++k)
{
currTriPtr = triPtr;
for (l = 0; l < numTri; ++l)
{
nlassert(currTriPtr[0] + currVertOffset <= 0xffff);
nlassert(currTriPtr[1] + currVertOffset <= 0xffff);
nlassert(currTriPtr[2] + currVertOffset <= 0xffff);
//
ibaWrite.setTri(3*index, (uint16) (currTriPtr[0] + currVertOffset), (uint16) (currTriPtr[1] + currVertOffset), (uint16) (currTriPtr[2] + currVertOffset));
currTriPtr += 3;
++ index;
}
currVertOffset += vertOffset;
}
}
// TODO quad / strips duplication : (unimplemented in primitive blocks for now)
PARTICLES_CHECK_MEM;
}
//====================================================================================
void CPSConstraintMesh::initPrerotVB()
{
NL_PS_FUNC(CPSConstraintMesh_initPrerotVB)
// position, no normals
_PreRotatedMeshVB.setVertexFormat(CVertexBuffer::PositionFlag);
_PreRotatedMeshVB.setNumVertices(ConstraintMeshMaxNumPrerotatedModels * ConstraintMeshMaxNumVerts);
_PreRotatedMeshVB.setName("CPSConstraintMesh::_PreRotatedMeshVB");
// position & normals
_PreRotatedMeshVBWithNormal.setVertexFormat(CVertexBuffer::PositionFlag | CVertexBuffer::NormalFlag);
_PreRotatedMeshVBWithNormal.setNumVertices(ConstraintMeshMaxNumPrerotatedModels * ConstraintMeshMaxNumVerts);
_PreRotatedMeshVB.setName("CPSConstraintMesh::_PreRotatedMeshVBWithNormal");
}
//====================================================================================
CPSConstraintMesh::CMeshDisplay &CPSConstraintMesh::CMeshDisplayShare::getMeshDisplay(CMesh *mesh, const CVertexBuffer &meshVB, uint32 format)
{
NL_PS_FUNC(CMeshDisplayShare_getMeshDisplay)
nlassert(mesh);
// linear search is ok because of small size
for(std::list<CMDEntry>::iterator it = _Cache.begin(); it != _Cache.end(); ++it)
{
if (it->Format == format && it->Mesh == mesh)
{
// relink at start (most recent use)
_Cache.splice(_Cache.begin(), _Cache, it);
return it->MD;
}
}
if (_NumMD == _MaxNumMD)
{
_Cache.pop_back(); // remove least recently used mesh
-- _NumMD;
}
//NLMISC::TTicks start = NLMISC::CTime::getPerformanceTime();
_Cache.push_front(CMDEntry());
_Cache.front().Mesh = mesh;
_Cache.front().Format = format;
buildRdrPassSet(_Cache.front().MD.RdrPasses, *mesh);
_Cache.front().MD.VB.setName("CPSConstraintMesh::CMeshDisplay");
buildVB(_Cache.front().MD.VB, meshVB, format);
++ _NumMD;
/*NLMISC::TTicks end = NLMISC::CTime::getPerformanceTime();
nlinfo("mesh setup time = %.2f", (float) (1000 * NLMISC::CTime::ticksToSecond(end - start))); */
return _Cache.front().MD;
}
//====================================================================================
void CPSConstraintMesh::CMeshDisplayShare::buildRdrPassSet(TRdrPassSet &dest, const CMesh &m)
{
NL_PS_FUNC(CMeshDisplayShare_buildRdrPassSet)
// we don't support skinning for mesh particles, so there must be only one matrix block
nlassert(m.getNbMatrixBlock() == 1); // SKINNING UNSUPPORTED
dest.resize(m.getNbRdrPass(0));
const CVertexBuffer &srcVb = m.getVertexBuffer();
for (uint k = 0; k < m.getNbRdrPass(0); ++k)
{
dest[k].Mat = m.getMaterial(m.getRdrPassMaterial(0, k));
dest[k].SourceMat = dest[k].Mat;
DuplicatePrimitiveBlock(m.getRdrPassPrimitiveBlock(0, k), dest[k].PbTri, ConstraintMeshBufSize, srcVb.getNumVertices() );
}
}
//====================================================================================
void CPSConstraintMesh::CMeshDisplayShare::buildVB(CVertexBuffer &dest, const CVertexBuffer &meshVb, uint32 destFormat)
{
NL_PS_FUNC(CMeshDisplayShare_buildVB)
/// we duplicate the original mesh data's 'ConstraintMeshBufSize' times, eventually adding a color
nlassert(destFormat == meshVb.getVertexFormat() || destFormat == (meshVb.getVertexFormat() | (uint32) CVertexBuffer::PrimaryColorFlag) );
dest.setVertexFormat(destFormat);
dest.setPreferredMemory(CVertexBuffer::AGPVolatile, true);
dest.setNumVertices(ConstraintMeshBufSize * meshVb.getNumVertices());
for(uint k = 0; k < CVertexBuffer::MaxStage; ++k)
{
dest.setUVRouting((uint8) k, meshVb.getUVRouting()[k]);
}
CVertexBufferReadWrite vba;
dest.lock (vba);
CVertexBufferRead vbaIn;
meshVb.lock (vbaIn);
uint8 *outPtr = (uint8 *) vba.getVertexCoordPointer();
uint8 *inPtr = (uint8 *) vbaIn.getVertexCoordPointer();
uint meshSize = dest.getVertexSize() * meshVb.getNumVertices();
if (destFormat == meshVb.getVertexFormat()) // no color added
{
for (uint k = 0; k < ConstraintMeshBufSize; ++k)
{
::memcpy((void *) (outPtr + k * meshSize), (void *) inPtr, meshSize);
}
}
else // color added, but not available in src
{
sint colorOff = dest.getColorOff();
uint inVSize = meshVb.getVertexSize();
uint outVSize = dest.getVertexSize();
for (uint k = 0; k < ConstraintMeshBufSize; ++k)
{
for (uint v = 0; v < meshVb.getNumVertices(); ++v)
{
// copy until color
::memcpy((void *) (outPtr + k * meshSize + v * outVSize), (void *) (inPtr + v * inVSize), colorOff);
// copy datas after color
::memcpy((void *) (outPtr + k * meshSize + v * outVSize + colorOff + sizeof(uint8[4])), (void *) (inPtr + v * inVSize + colorOff), inVSize - colorOff);
}
}
}
}
//=====================================================================================
CPSConstraintMesh::CGlobalTexAnim::CGlobalTexAnim() : TransOffset(NLMISC::CVector2f::Null),
TransSpeed(NLMISC::CVector2f::Null),
TransAccel(NLMISC::CVector2f::Null),
ScaleStart(1 ,1),
ScaleSpeed(NLMISC::CVector2f::Null),
ScaleAccel(NLMISC::CVector2f::Null),
WRotSpeed(0),
WRotAccel(0)
{
NL_PS_FUNC(CGlobalTexAnim_CGlobalTexAnim)
}
//=====================================================================================
void CPSConstraintMesh::CGlobalTexAnim::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CGlobalTexAnim_IStream )
// version 1 : added offset
sint ver = f.serialVersion(1);
if (ver >= 1)
{
f.serial(TransOffset);
}
f.serial(TransSpeed, TransAccel, ScaleStart, ScaleSpeed, ScaleAccel);
f.serial(WRotSpeed, WRotAccel);
}
//=====================================================================================
void CPSConstraintMesh::CGlobalTexAnim::buildMatrix(float date, NLMISC::CMatrix &dest)
{
NL_PS_FUNC(CGlobalTexAnim_buildMatrix)
float fDate = (float) date;
float halfDateSquared = 0.5f * fDate * fDate;
NLMISC::CVector2f pos = fDate * TransSpeed + halfDateSquared * fDate * TransAccel + TransOffset;
NLMISC::CVector2f scale = ScaleStart + fDate * ScaleSpeed + halfDateSquared * fDate * ScaleAccel;
float rot = fDate * WRotSpeed + halfDateSquared * WRotAccel;
float fCos, fSin;
if (rot != 0.f)
{
fCos = ::cosf(- rot);
fSin = ::sinf(- rot);
}
else
{
fCos = 1.f;
fSin = 0.f;
}
NLMISC::CVector I(fCos, fSin, 0);
NLMISC::CVector J(-fSin, fCos, 0);
dest.setRot(scale.x * I, scale.y * J, NLMISC::CVector::K);
NLMISC::CVector center(-0.5f, -0.5f, 0.f);
NLMISC::CVector t(pos.x, pos.y, 0);
dest.setPos(t + dest.mulVector(center) - center);
}
//=====================================================================================
void CPSConstraintMesh::setGlobalTexAnim(uint stage, const CGlobalTexAnim &properties)
{
NL_PS_FUNC(CPSConstraintMesh_setGlobalTexAnim)
nlassert(_GlobalAnimationEnabled != 0);
nlassert(stage < IDRV_MAT_MAXTEXTURES);
nlassert(_GlobalTexAnims.get());
_GlobalTexAnims->Anims[stage] = properties;
}
//=====================================================================================
const CPSConstraintMesh::CGlobalTexAnim &CPSConstraintMesh::getGlobalTexAnim(uint stage) const
{
NL_PS_FUNC(CPSConstraintMesh_getGlobalTexAnim)
nlassert(_GlobalAnimationEnabled != 0);
nlassert(stage < IDRV_MAT_MAXTEXTURES);
nlassert(_GlobalTexAnims.get());
return _GlobalTexAnims->Anims[stage];
}
//=====================================================================================
CPSConstraintMesh::TTexAnimType CPSConstraintMesh::getTexAnimType() const
{
NL_PS_FUNC(CPSConstraintMesh_getTexAnimType)
return (TTexAnimType) (_GlobalAnimationEnabled != 0 ? GlobalAnim : NoAnim);
}
//=====================================================================================
void CPSConstraintMesh::setTexAnimType(TTexAnimType type)
{
NL_PS_FUNC(CPSConstraintMesh_setTexAnimType)
nlassert(type < Last);
if (type == getTexAnimType()) return; // does the type of animation change ?
switch (type)
{
case NoAnim:
_GlobalTexAnims.reset();
restoreMaterials();
_GlobalAnimationEnabled = 0;
break;
case GlobalAnim:
{
PGlobalTexAnims newPtr(new CGlobalTexAnims);
//std::swap(_GlobalTexAnims, newPtr);
_GlobalTexAnims = newPtr;
_GlobalAnimationEnabled = 1;
}
break;
default: break;
}
}
//=====================================================================================
void CPSConstraintMesh::CGlobalTexAnims::serial(NLMISC::IStream &f) throw(NLMISC::EStream)
{
NL_PS_FUNC(CGlobalTexAnims_IStream )
f.serialVersion(0);
for (uint k = 0; k < IDRV_MAT_MAXTEXTURES; ++k)
{
f.serial(Anims[k]);
}
}
//=====================================================================================
void CPSConstraintMesh::restoreMaterials()
{
NL_PS_FUNC(CPSConstraintMesh_restoreMaterials)
update();
CMeshDisplay &md= _MeshDisplayShare.getMeshDisplay(_Meshes[0], getMeshVB(0), _Meshes[0]->getVertexBuffer().getVertexFormat() | (_ColorScheme ? CVertexBuffer::PrimaryColorFlag : 0));
TRdrPassSet rdrPasses = md.RdrPasses;
// render meshs : we process each rendering pass
for (TRdrPassSet::iterator rdrPassIt = rdrPasses.begin(); rdrPassIt != rdrPasses.end(); ++rdrPassIt)
{
rdrPassIt->Mat = rdrPassIt->SourceMat;
}
}
//=====================================================================================
const CVertexBuffer &CPSConstraintMesh::getMeshVB(uint index)
{
nlassert(!_Touched);
nlassert(index < _Meshes.size());
nlassert(_MeshVertexBuffers.size() == _Meshes.size());
const CVertexBuffer *vb = _MeshVertexBuffers[index];
if (!vb )
{
CMesh &mesh = * NLMISC::safe_cast<CMesh *>((IShape *) _Meshes[index]);
vb = _MeshVertexBuffers[index] = &mesh.getVertexBuffer();
}
if (vb->getLocation() != CVertexBuffer::NotResident)
{
TMeshName2RamVB::iterator it = _MeshRamVBs.find(_MeshShapeFileName[index]);
if (it == _MeshRamVBs.end())
{
CVertexBuffer &destVb = _MeshRamVBs[_MeshShapeFileName[index]];
CMesh &mesh = * NLMISC::safe_cast<CMesh *>((IShape *) _Meshes[index]);
mesh.getVertexBuffer().copyVertices(destVb);
_MeshVertexBuffers[index] = vb = &destVb;
}
else
{
_MeshVertexBuffers[index] = vb = &it->second;
}
}
nlassert(vb->getLocation() == CVertexBuffer::NotResident);
return *vb;
}
//=====================================================================================
void CPSMesh::onShow(bool shown)
{
for(uint k = 0; k < _Instances.getSize(); ++k)
{
if (_Instances[k])
{
if (shown)
{
_Instances[k]->show();
}
else
{
_Instances[k]->hide();
}
}
}
}
} // NL3D